Invariants
Base field: | $\F_{31}$ |
Dimension: | $2$ |
L-polynomial: | $1 - 8 x + 30 x^{2} - 248 x^{3} + 961 x^{4}$ |
Frobenius angles: | $\pm0.0615194144604$, $\pm0.584698863036$ |
Angle rank: | $2$ (numerical) |
Number field: | 4.0.4752.1 |
Galois group: | $D_{4}$ |
Jacobians: | $48$ |
This isogeny class is simple and geometrically simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
$p$-rank: | $2$ |
Slopes: | $[0, 0, 1, 1]$ |
Point counts
Point counts of the abelian variety
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
---|---|---|---|---|---|
$A(\F_{q^r})$ | $736$ | $918528$ | $871666144$ | $850762678272$ | $819751729932256$ |
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
---|---|---|---|---|---|---|---|---|---|---|
$C(\F_{q^r})$ | $24$ | $958$ | $29256$ | $921214$ | $28633464$ | $887478334$ | $27512224680$ | $852891969790$ | $26439630872280$ | $819628256483518$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 48 curves (of which all are hyperelliptic):
- $y^2=9 x^6+3 x^5+3 x^4+15 x^3+25 x^2+2 x+1$
- $y^2=22 x^5+8 x^4+14 x^3+15 x^2+11 x+30$
- $y^2=16 x^6+30 x^5+30 x^4+4 x^3+13 x^2+28 x+3$
- $y^2=6 x^6+11 x^5+11 x^4+18 x^3+30 x^2+29 x+10$
- $y^2=12 x^6+7 x^5+22 x^4+23 x^3+25 x^2+19 x+14$
- $y^2=28 x^5+22 x^3+22 x^2+8 x+12$
- $y^2=22 x^6+9 x^5+15 x^4+6 x^3+18 x^2+6 x+9$
- $y^2=17 x^6+30 x^5+16 x^4+23 x^3+15 x^2+23 x+24$
- $y^2=6 x^6+23 x^5+6 x^4+5 x^3+5 x^2+16 x+30$
- $y^2=26 x^6+5 x^5+7 x^4+23 x^3+27 x^2+14 x$
- $y^2=24 x^6+26 x^5+8 x^4+9 x^3+21 x^2+17 x+21$
- $y^2=29 x^6+17 x^5+10 x^4+11 x^3+30 x^2+4 x+28$
- $y^2=9 x^6+22 x^5+11 x^4+2 x^3+25 x^2+3 x+25$
- $y^2=9 x^5+10 x^4+20 x^3+11 x^2+25 x+28$
- $y^2=5 x^6+9 x^5+28 x^4+28 x^3+13 x^2+15 x+25$
- $y^2=12 x^6+4 x^4+19 x^3+8 x^2+29 x+3$
- $y^2=30 x^6+27 x^5+27 x^4+14 x^3+13 x^2+x+3$
- $y^2=3 x^6+27 x^5+10 x^4+8 x^3+22 x^2+15 x+15$
- $y^2=2 x^6+26 x^5+11 x^4+2 x^3+28 x^2+2 x+20$
- $y^2=6 x^6+23 x^5+5 x^4+6 x^3+28 x^2+12 x+19$
- and 28 more
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{31}$.
Endomorphism algebra over $\F_{31}$The endomorphism algebra of this simple isogeny class is 4.0.4752.1. |
Base change
This is a primitive isogeny class.
Twists
Below is a list of all twists of this isogeny class.
Twist | Extension degree | Common base change |
---|---|---|
2.31.i_be | $2$ | (not in LMFDB) |