Invariants
| Base field: | $\F_{31}$ |
| Dimension: | $2$ |
| L-polynomial: | $1 - 4 x + 54 x^{2} - 124 x^{3} + 961 x^{4}$ |
| Frobenius angles: | $\pm0.336744463011$, $\pm0.541972978635$ |
| Angle rank: | $2$ (numerical) |
| Number field: | 4.0.412992.5 |
| Galois group: | $D_{4}$ |
| Jacobians: | $56$ |
This isogeny class is simple and geometrically simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
| $p$-rank: | $2$ |
| Slopes: | $[0, 0, 1, 1]$ |
Point counts
Point counts of the abelian variety
| $r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
|---|---|---|---|---|---|
| $A(\F_{q^r})$ | $888$ | $1015872$ | $893833272$ | $852178449408$ | $819648804433848$ |
| $r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
|---|---|---|---|---|---|---|---|---|---|---|
| $C(\F_{q^r})$ | $28$ | $1054$ | $30004$ | $922750$ | $28629868$ | $887486110$ | $27512205700$ | $852891183358$ | $26439641931580$ | $819628324428574$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 56 curves (of which all are hyperelliptic):
- $y^2=26 x^6+22 x^5+29 x^4+27 x^2+13 x+10$
- $y^2=9 x^6+14 x^5+18 x^4+18 x^3+24 x^2+10 x+22$
- $y^2=14 x^6+9 x^5+12 x^4+x^3+24 x^2+25 x+2$
- $y^2=24 x^6+30 x^5+7 x^4+4 x^3+25 x^2+30 x+19$
- $y^2=3 x^6+23 x^5+14 x^4+27 x^3+5 x^2+21 x$
- $y^2=27 x^6+3 x^5+15 x^4+4 x^3+16 x^2+20 x+22$
- $y^2=17 x^6+10 x^5+15 x^4+15 x^3+7 x^2+3 x+4$
- $y^2=16 x^6+26 x^5+14 x^3+30 x^2+3 x+23$
- $y^2=12 x^6+11 x^4+28 x^3+9 x^2+7 x+16$
- $y^2=4 x^6+6 x^5+11 x^4+14 x^3+24 x^2+9 x+27$
- $y^2=15 x^6+27 x^5+28 x^4+15 x^3+20 x^2+26 x+2$
- $y^2=11 x^6+29 x^5+25 x^4+8 x^2+28$
- $y^2=21 x^6+5 x^5+27 x^4+8 x^3+16 x^2+15$
- $y^2=17 x^6+30 x^5+17 x^4+27 x^3+22 x^2+2 x+10$
- $y^2=22 x^6+13 x^5+25 x^4+13 x^3+21 x^2+28 x+24$
- $y^2=27 x^6+5 x^5+22 x^4+28 x^3+18 x^2+13 x+16$
- $y^2=5 x^6+5 x^5+7 x^4+6 x^3+4 x^2+26 x+29$
- $y^2=21 x^6+27 x^5+20 x^4+10 x^3+x^2+25 x+17$
- $y^2=24 x^6+30 x^5+19 x^4+24 x^3+2 x^2+7 x+23$
- $y^2=12 x^6+2 x^5+13 x^4+28 x^3+18 x^2+13 x+19$
- and 36 more
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{31}$.
Endomorphism algebra over $\F_{31}$| The endomorphism algebra of this simple isogeny class is 4.0.412992.5. |
Base change
This is a primitive isogeny class.
Twists
Below is a list of all twists of this isogeny class.
| Twist | Extension degree | Common base change |
|---|---|---|
| 2.31.e_cc | $2$ | (not in LMFDB) |