Properties

Label 2.29.g_k
Base field $\F_{29}$
Dimension $2$
$p$-rank $2$
Ordinary yes
Supersingular no
Simple yes
Geometrically simple yes
Primitive yes
Principally polarizable yes
Contains a Jacobian yes

Related objects

Downloads

Learn more

Invariants

Base field:  $\F_{29}$
Dimension:  $2$
L-polynomial:  $1 + 6 x + 10 x^{2} + 174 x^{3} + 841 x^{4}$
Frobenius angles:  $\pm0.361173182113$, $\pm0.935480068619$
Angle rank:  $2$ (numerical)
Number field:  4.0.90972.2
Galois group:  $D_{4}$
Jacobians:  $44$
Isomorphism classes:  80

This isogeny class is simple and geometrically simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.

Newton polygon

This isogeny class is ordinary.

$p$-rank:  $2$
Slopes:  $[0, 0, 1, 1]$

Point counts

Point counts of the abelian variety

$r$ $1$ $2$ $3$ $4$ $5$
$A(\F_{q^r})$ $1032$ $693504$ $608559048$ $499633569792$ $420653212382472$

Point counts of the curve

$r$ $1$ $2$ $3$ $4$ $5$ $6$ $7$ $8$ $9$ $10$
$C(\F_{q^r})$ $36$ $826$ $24948$ $706414$ $20508516$ $594764170$ $17249939316$ $500247814750$ $14507149442724$ $420707237264986$

Jacobians and polarizations

This isogeny class is principally polarizable and contains the Jacobians of 44 curves (of which all are hyperelliptic):

Decomposition and endomorphism algebra

All geometric endomorphisms are defined over $\F_{29}$.

Endomorphism algebra over $\F_{29}$
The endomorphism algebra of this simple isogeny class is 4.0.90972.2.

Base change

This is a primitive isogeny class.

Twists

Below is a list of all twists of this isogeny class.

TwistExtension degreeCommon base change
2.29.ag_k$2$(not in LMFDB)