Invariants
Base field: | $\F_{29}$ |
Dimension: | $2$ |
L-polynomial: | $1 + 6 x + 10 x^{2} + 174 x^{3} + 841 x^{4}$ |
Frobenius angles: | $\pm0.361173182113$, $\pm0.935480068619$ |
Angle rank: | $2$ (numerical) |
Number field: | 4.0.90972.2 |
Galois group: | $D_{4}$ |
Jacobians: | $44$ |
Isomorphism classes: | 80 |
This isogeny class is simple and geometrically simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
$p$-rank: | $2$ |
Slopes: | $[0, 0, 1, 1]$ |
Point counts
Point counts of the abelian variety
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
---|---|---|---|---|---|
$A(\F_{q^r})$ | $1032$ | $693504$ | $608559048$ | $499633569792$ | $420653212382472$ |
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
---|---|---|---|---|---|---|---|---|---|---|
$C(\F_{q^r})$ | $36$ | $826$ | $24948$ | $706414$ | $20508516$ | $594764170$ | $17249939316$ | $500247814750$ | $14507149442724$ | $420707237264986$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 44 curves (of which all are hyperelliptic):
- $y^2=9 x^6+24 x^5+26 x^4+11 x^3+6 x^2+26 x+20$
- $y^2=9 x^6+x^5+27 x^4+9 x^3+17 x^2+3 x+20$
- $y^2=27 x^6+5 x^5+23 x^4+22 x^3+26 x^2+7 x+25$
- $y^2=28 x^6+22 x^5+21 x^4+x^3+8 x^2+20 x+16$
- $y^2=15 x^6+4 x^5+25 x^4+22 x^3+20 x^2+27 x+20$
- $y^2=9 x^6+22 x^5+19 x^4+17 x^3+28 x^2+7 x+10$
- $y^2=11 x^6+26 x^5+28 x^4+20 x^3+20 x^2+23 x+22$
- $y^2=9 x^6+20 x^5+x^4+12 x^3+6 x^2+4$
- $y^2=16 x^6+6 x^5+22 x^3+13 x^2+6 x+7$
- $y^2=13 x^6+26 x^5+25 x^4+4 x^3+26 x^2+25 x+7$
- $y^2=27 x^6+27 x^5+23 x^4+7 x^3+4 x+11$
- $y^2=21 x^6+23 x^5+23 x^4+x^3+21 x^2+2 x+28$
- $y^2=20 x^6+14 x^5+6 x^4+8 x^3+18 x^2+25 x+21$
- $y^2=28 x^6+x^5+17 x^4+12 x^3+12 x+4$
- $y^2=2 x^6+27 x^5+15 x^4+24 x^3+10 x^2+10 x+3$
- $y^2=15 x^6+24 x^5+22 x^4+20 x^2+5 x+14$
- $y^2=24 x^6+6 x^5+27 x^3+3 x^2+27 x+16$
- $y^2=2 x^6+6 x^5+24 x^4+11 x^3+24 x^2+23 x+15$
- $y^2=28 x^6+27 x^5+4 x^4+12 x^3+20 x^2+2 x+23$
- $y^2=3 x^6+21 x^5+15 x^4+12 x^3+22 x^2+17 x+25$
- and 24 more
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{29}$.
Endomorphism algebra over $\F_{29}$The endomorphism algebra of this simple isogeny class is 4.0.90972.2. |
Base change
This is a primitive isogeny class.
Twists
Below is a list of all twists of this isogeny class.
Twist | Extension degree | Common base change |
---|---|---|
2.29.ag_k | $2$ | (not in LMFDB) |