Invariants
| Base field: | $\F_{29}$ |
| Dimension: | $2$ |
| L-polynomial: | $1 + 6 x + 40 x^{2} + 174 x^{3} + 841 x^{4}$ |
| Frobenius angles: | $\pm0.434635775423$, $\pm0.775288189838$ |
| Angle rank: | $2$ (numerical) |
| Number field: | 4.0.781632.1 |
| Galois group: | $D_{4}$ |
| Jacobians: | $64$ |
This isogeny class is simple and geometrically simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
| $p$-rank: | $2$ |
| Slopes: | $[0, 0, 1, 1]$ |
Point counts
Point counts of the abelian variety
| $r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
|---|---|---|---|---|---|
| $A(\F_{q^r})$ | $1062$ | $745524$ | $595281798$ | $500565688272$ | $420376412404422$ |
| $r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
|---|---|---|---|---|---|---|---|---|---|---|
| $C(\F_{q^r})$ | $36$ | $886$ | $24408$ | $707734$ | $20495016$ | $594861910$ | $17250196356$ | $500245376350$ | $14507146248084$ | $420707184990886$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 64 curves (of which all are hyperelliptic):
- $y^2=17 x^6+14 x^5+10 x^4+22 x^3+22 x^2+12 x+21$
- $y^2=4 x^6+4 x^5+10 x^4+2 x^3+27 x^2+25 x+27$
- $y^2=6 x^6+9 x^5+3 x^4+25 x^3+22 x^2+5 x+11$
- $y^2=16 x^6+27 x^5+19 x^4+20 x^3+4 x^2+2 x+16$
- $y^2=5 x^6+23 x^5+15 x^3+20 x^2+26 x+2$
- $y^2=24 x^6+7 x^5+12 x^4+7 x^3+5 x^2+11 x+6$
- $y^2=3 x^6+22 x^5+27 x^4+10 x^3+23 x^2+20 x+13$
- $y^2=15 x^6+21 x^5+5 x^4+25 x^3+26 x^2+11 x+8$
- $y^2=25 x^6+2 x^5+x^4+16 x^3+19 x^2+23 x+13$
- $y^2=13 x^6+27 x^5+26 x^4+13 x^3+2 x^2+2 x+24$
- $y^2=7 x^6+15 x^5+21 x^3+26 x^2+12 x+5$
- $y^2=19 x^6+12 x^5+11 x^4+13 x^3+12 x^2+27 x+26$
- $y^2=23 x^6+5 x^5+2 x^4+19 x^3+25 x^2+24 x+28$
- $y^2=x^6+14 x^5+26 x^4+28 x^2+24 x+15$
- $y^2=7 x^6+25 x^5+23 x^4+24 x^3+7 x^2+3$
- $y^2=24 x^6+11 x^5+24 x^4+19 x^3+3 x^2+26 x$
- $y^2=9 x^5+28 x^4+x^3+3 x^2+20 x+12$
- $y^2=20 x^6+19 x^4+27 x^3+21 x^2+16 x+13$
- $y^2=15 x^6+18 x^5+2 x^4+19 x^3+25 x^2+22 x+5$
- $y^2=20 x^6+7 x^5+20 x^4+28 x^2+10 x+3$
- and 44 more
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{29}$.
Endomorphism algebra over $\F_{29}$| The endomorphism algebra of this simple isogeny class is 4.0.781632.1. |
Base change
This is a primitive isogeny class.
Twists
Below is a list of all twists of this isogeny class.
| Twist | Extension degree | Common base change |
|---|---|---|
| 2.29.ag_bo | $2$ | (not in LMFDB) |