Properties

Label 2.29.ar_ez
Base field $\F_{29}$
Dimension $2$
$p$-rank $2$
Ordinary yes
Supersingular no
Simple yes
Geometrically simple yes
Primitive yes
Principally polarizable yes
Contains a Jacobian yes

Related objects

Downloads

Learn more

Invariants

Base field:  $\F_{29}$
Dimension:  $2$
L-polynomial:  $1 - 17 x + 129 x^{2} - 493 x^{3} + 841 x^{4}$
Frobenius angles:  $\pm0.148587705549$, $\pm0.259628098963$
Angle rank:  $2$ (numerical)
Number field:  4.0.36125.1
Galois group:  $C_4$
Jacobians:  $2$

This isogeny class is simple and geometrically simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.

Newton polygon

This isogeny class is ordinary.

$p$-rank:  $2$
Slopes:  $[0, 0, 1, 1]$

Point counts

Point counts of the abelian variety

$r$ $1$ $2$ $3$ $4$ $5$
$A(\F_{q^r})$ $461$ $682741$ $599420321$ $501777084245$ $420945811577296$

Point counts of the curve

$r$ $1$ $2$ $3$ $4$ $5$ $6$ $7$ $8$ $9$ $10$
$C(\F_{q^r})$ $13$ $811$ $24577$ $709443$ $20522778$ $594860491$ $17249916277$ $500246212803$ $14507145962593$ $420707247339606$

Jacobians and polarizations

This isogeny class is principally polarizable and contains the Jacobians of 2 curves (of which all are hyperelliptic):

Decomposition and endomorphism algebra

All geometric endomorphisms are defined over $\F_{29}$.

Endomorphism algebra over $\F_{29}$
The endomorphism algebra of this simple isogeny class is 4.0.36125.1.

Base change

This is a primitive isogeny class.

Twists

Below is a list of all twists of this isogeny class.

TwistExtension degreeCommon base change
2.29.r_ez$2$(not in LMFDB)