Invariants
Base field: | $\F_{29}$ |
Dimension: | $2$ |
L-polynomial: | $1 - 17 x + 129 x^{2} - 493 x^{3} + 841 x^{4}$ |
Frobenius angles: | $\pm0.148587705549$, $\pm0.259628098963$ |
Angle rank: | $2$ (numerical) |
Number field: | 4.0.36125.1 |
Galois group: | $C_4$ |
Jacobians: | $2$ |
This isogeny class is simple and geometrically simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
$p$-rank: | $2$ |
Slopes: | $[0, 0, 1, 1]$ |
Point counts
Point counts of the abelian variety
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
---|---|---|---|---|---|
$A(\F_{q^r})$ | $461$ | $682741$ | $599420321$ | $501777084245$ | $420945811577296$ |
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
---|---|---|---|---|---|---|---|---|---|---|
$C(\F_{q^r})$ | $13$ | $811$ | $24577$ | $709443$ | $20522778$ | $594860491$ | $17249916277$ | $500246212803$ | $14507145962593$ | $420707247339606$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 2 curves (of which all are hyperelliptic):
- $y^2=3 x^6+5 x^5+20 x^4+16 x^3+9 x^2+x+14$
- $y^2=17 x^6+26 x^5+8 x^4+2 x^3+8 x^2+14 x+15$
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{29}$.
Endomorphism algebra over $\F_{29}$The endomorphism algebra of this simple isogeny class is 4.0.36125.1. |
Base change
This is a primitive isogeny class.
Twists
Below is a list of all twists of this isogeny class.
Twist | Extension degree | Common base change |
---|---|---|
2.29.r_ez | $2$ | (not in LMFDB) |