Invariants
Base field: | $\F_{29}$ |
Dimension: | $2$ |
L-polynomial: | $1 - 16 x + 119 x^{2} - 464 x^{3} + 841 x^{4}$ |
Frobenius angles: | $\pm0.140915858920$, $\pm0.302284266018$ |
Angle rank: | $2$ (numerical) |
Number field: | 4.0.235152.2 |
Galois group: | $D_{4}$ |
Jacobians: | $4$ |
This isogeny class is simple and geometrically simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
$p$-rank: | $2$ |
Slopes: | $[0, 0, 1, 1]$ |
Point counts
Point counts of the abelian variety
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
---|---|---|---|---|---|
$A(\F_{q^r})$ | $481$ | $693121$ | $600313012$ | $501426604393$ | $420811961468041$ |
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
---|---|---|---|---|---|---|---|---|---|---|
$C(\F_{q^r})$ | $14$ | $824$ | $24614$ | $708948$ | $20516254$ | $594825806$ | $17249893318$ | $500247356644$ | $14507155910942$ | $420707285765864$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 4 curves (of which all are hyperelliptic):
- $y^2=15 x^6+12 x^5+28 x^4+19 x^3+11 x^2+27 x+23$
- $y^2=19 x^6+6 x^5+28 x^4+3 x^3+15 x^2+20 x+3$
- $y^2=19 x^6+22 x^5+21 x^4+3 x^3+18 x^2+21 x+15$
- $y^2=8 x^6+3 x^5+3 x^4+19 x^3+6 x^2+3 x+26$
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{29}$.
Endomorphism algebra over $\F_{29}$The endomorphism algebra of this simple isogeny class is 4.0.235152.2. |
Base change
This is a primitive isogeny class.
Twists
Below is a list of all twists of this isogeny class.
Twist | Extension degree | Common base change |
---|---|---|
2.29.q_ep | $2$ | (not in LMFDB) |