Invariants
Base field: | $\F_{29}$ |
Dimension: | $2$ |
L-polynomial: | $1 - 15 x + 106 x^{2} - 435 x^{3} + 841 x^{4}$ |
Frobenius angles: | $\pm0.0868090923144$, $\pm0.358628872989$ |
Angle rank: | $2$ (numerical) |
Number field: | 4.0.866844.2 |
Galois group: | $D_{4}$ |
Jacobians: | $10$ |
This isogeny class is simple and geometrically simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
$p$-rank: | $2$ |
Slopes: | $[0, 0, 1, 1]$ |
Point counts
Point counts of the abelian variety
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
---|---|---|---|---|---|
$A(\F_{q^r})$ | $498$ | $696204$ | $597002400$ | $499941307584$ | $420521149074378$ |
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
---|---|---|---|---|---|---|---|---|---|---|
$C(\F_{q^r})$ | $15$ | $829$ | $24480$ | $706849$ | $20502075$ | $594783178$ | $17249972055$ | $500248520929$ | $14507157615840$ | $420707259865429$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 10 curves (of which all are hyperelliptic):
- $y^2=25 x^6+4 x^5+17 x^4+27 x^2+28 x$
- $y^2=28 x^6+7 x^5+11 x^4+12 x^3+12 x^2+3 x+3$
- $y^2=5 x^6+26 x^5+15 x^4+27 x^3+8 x^2+11 x+4$
- $y^2=8 x^6+10 x^5+6 x^4+23 x^3+14 x^2+21 x+15$
- $y^2=24 x^5+10 x^4+x^3+17 x^2+14 x+24$
- $y^2=22 x^6+27 x^5+22 x^4+21 x^3+15 x+8$
- $y^2=8 x^6+25 x^5+26 x^4+22 x^3+27 x^2+2 x+17$
- $y^2=3 x^6+20 x^5+2 x^4+9 x^3+11 x^2+7 x+10$
- $y^2=15 x^6+19 x^5+x^4+20 x^3+14 x^2+5 x+14$
- $y^2=10 x^6+20 x^5+28 x^3+21 x^2+6 x+21$
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{29}$.
Endomorphism algebra over $\F_{29}$The endomorphism algebra of this simple isogeny class is 4.0.866844.2. |
Base change
This is a primitive isogeny class.
Twists
Below is a list of all twists of this isogeny class.
Twist | Extension degree | Common base change |
---|---|---|
2.29.p_ec | $2$ | (not in LMFDB) |