Invariants
Base field: | $\F_{29}$ |
Dimension: | $2$ |
L-polynomial: | $1 - 15 x + 105 x^{2} - 435 x^{3} + 841 x^{4}$ |
Frobenius angles: | $\pm0.0657493903052$, $\pm0.364141013558$ |
Angle rank: | $2$ (numerical) |
Number field: | 4.0.642061.1 |
Galois group: | $D_{4}$ |
Jacobians: | $4$ |
Isomorphism classes: | 4 |
This isogeny class is simple and geometrically simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
$p$-rank: | $2$ |
Slopes: | $[0, 0, 1, 1]$ |
Point counts
Point counts of the abelian variety
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
---|---|---|---|---|---|
$A(\F_{q^r})$ | $497$ | $694309$ | $595893557$ | $499603232821$ | $420455022724352$ |
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
---|---|---|---|---|---|---|---|---|---|---|
$C(\F_{q^r})$ | $15$ | $827$ | $24435$ | $706371$ | $20498850$ | $594766667$ | $17249883855$ | $500247890563$ | $14507153047035$ | $420707235148502$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 4 curves (of which all are hyperelliptic):
- $y^2=27 x^6+28 x^5+8 x^4+28 x^3+18 x^2+18 x+8$
- $y^2=10 x^6+17 x^5+22 x^4+2 x^3+2 x^2+5 x+8$
- $y^2=11 x^6+4 x^5+24 x^4+19 x^3+15 x^2+7 x+10$
- $y^2=20 x^6+4 x^5+12 x^3+5 x^2+2$
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{29}$.
Endomorphism algebra over $\F_{29}$The endomorphism algebra of this simple isogeny class is 4.0.642061.1. |
Base change
This is a primitive isogeny class.
Twists
Below is a list of all twists of this isogeny class.
Twist | Extension degree | Common base change |
---|---|---|
2.29.p_eb | $2$ | (not in LMFDB) |