Invariants
Base field: | $\F_{29}$ |
Dimension: | $2$ |
L-polynomial: | $( 1 - 9 x + 29 x^{2} )( 1 - 5 x + 29 x^{2} )$ |
$1 - 14 x + 103 x^{2} - 406 x^{3} + 841 x^{4}$ | |
Frobenius angles: | $\pm0.185103371333$, $\pm0.346328109963$ |
Angle rank: | $2$ (numerical) |
Jacobians: | $24$ |
Isomorphism classes: | 40 |
This isogeny class is not simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
$p$-rank: | $2$ |
Slopes: | $[0, 0, 1, 1]$ |
Point counts
Point counts of the abelian variety
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
---|---|---|---|---|---|
$A(\F_{q^r})$ | $525$ | $716625$ | $603766800$ | $501483425625$ | $420764365300125$ |
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
---|---|---|---|---|---|---|---|---|---|---|
$C(\F_{q^r})$ | $16$ | $852$ | $24754$ | $709028$ | $20513936$ | $594821862$ | $17249971664$ | $500247561028$ | $14507149291546$ | $420707201410452$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 24 curves (of which all are hyperelliptic):
- $y^2=20 x^6+25 x^5+15 x^4+9 x^3+3 x^2+x+28$
- $y^2=20 x^6+14 x^5+19 x^3+14 x+9$
- $y^2=15 x^6+28 x^5+13 x^4+5 x^3+8 x^2+4 x+3$
- $y^2=18 x^6+3 x^5+27 x^4+11 x^3+15 x^2+17 x+11$
- $y^2=14 x^6+10 x^5+22 x^4+20 x^3+7 x^2+10 x+15$
- $y^2=2 x^6+17 x^5+26 x^4+20 x^3+14 x^2+26 x+19$
- $y^2=20 x^6+8 x^5+13 x^4+25 x^3+24 x^2+5 x+27$
- $y^2=23 x^6+4 x^5+4 x^4+14 x^3+10 x^2+25 x+4$
- $y^2=17 x^6+11 x^5+17 x^4+24 x^3+4 x^2+19 x+28$
- $y^2=6 x^6+12 x^5+27 x^4+25 x^3+7 x^2+15$
- $y^2=15 x^6+7 x^5+15 x^4+3 x^3+18 x^2+24 x+12$
- $y^2=12 x^6+13 x^5+13 x^4+8 x^3+11 x^2+18 x+28$
- $y^2=6 x^6+5 x^5+24 x^4+28 x^3+28 x^2+25 x+3$
- $y^2=16 x^6+20 x^5+14 x^4+24 x^3+11 x^2+23 x+7$
- $y^2=3 x^6+6 x^5+14 x^4+5 x^3+12 x^2+5 x+27$
- $y^2=14 x^6+2 x^5+8 x^4+20 x^3+16 x^2+17 x+27$
- $y^2=11 x^6+9 x^5+2 x^4+13 x^3+2 x^2+9 x+11$
- $y^2=19 x^6+24 x^5+12 x^4+27 x^3+17 x^2+24 x+10$
- $y^2=18 x^6+20 x^5+21 x^4+13 x^3+18 x^2+7 x+17$
- $y^2=5 x^6+8 x^5+11 x^4+24 x^3+19 x^2+15 x+4$
- $y^2=17 x^6+14 x^5+27 x^4+9 x^3+x^2+18 x+19$
- $y^2=5 x^6+21 x^5+5 x^3+14 x+25$
- $y^2=14 x^6+19 x^5+13 x^4+17 x^3+26 x^2+22 x+17$
- $y^2=3 x^6+4 x^5+17 x^4+17 x^3+21 x^2+5 x+17$
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{29}$.
Endomorphism algebra over $\F_{29}$The isogeny class factors as 1.29.aj $\times$ 1.29.af and its endomorphism algebra is a direct product of the endomorphism algebras for each isotypic factor. The endomorphism algebra for each factor is: |
Base change
This is a primitive isogeny class.
Twists
Below is a list of all twists of this isogeny class.
Twist | Extension degree | Common base change |
---|---|---|
2.29.ae_n | $2$ | (not in LMFDB) |
2.29.e_n | $2$ | (not in LMFDB) |
2.29.o_dz | $2$ | (not in LMFDB) |