Properties

Label 2.29.an_dg
Base field $\F_{29}$
Dimension $2$
$p$-rank $2$
Ordinary yes
Supersingular no
Simple yes
Geometrically simple yes
Primitive yes
Principally polarizable yes
Contains a Jacobian yes

Related objects

Downloads

Learn more

Invariants

Base field:  $\F_{29}$
Dimension:  $2$
L-polynomial:  $1 - 13 x + 84 x^{2} - 377 x^{3} + 841 x^{4}$
Frobenius angles:  $\pm0.0672107836573$, $\pm0.426379556366$
Angle rank:  $2$ (numerical)
Number field:  4.0.591500.2
Galois group:  $D_{4}$
Jacobians:  $12$
Isomorphism classes:  24

This isogeny class is simple and geometrically simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.

Newton polygon

This isogeny class is ordinary.

$p$-rank:  $2$
Slopes:  $[0, 0, 1, 1]$

Point counts

Point counts of the abelian variety

$r$ $1$ $2$ $3$ $4$ $5$
$A(\F_{q^r})$ $536$ $705376$ $593553536$ $498743154560$ $420445732619896$

Point counts of the curve

$r$ $1$ $2$ $3$ $4$ $5$ $6$ $7$ $8$ $9$ $10$
$C(\F_{q^r})$ $17$ $841$ $24338$ $705153$ $20498397$ $594817606$ $17250114353$ $500246970273$ $14507141795642$ $420707226692481$

Jacobians and polarizations

This isogeny class is principally polarizable and contains the Jacobians of 12 curves (of which all are hyperelliptic):

Decomposition and endomorphism algebra

All geometric endomorphisms are defined over $\F_{29}$.

Endomorphism algebra over $\F_{29}$
The endomorphism algebra of this simple isogeny class is 4.0.591500.2.

Base change

This is a primitive isogeny class.

Twists

Below is a list of all twists of this isogeny class.

TwistExtension degreeCommon base change
2.29.n_dg$2$(not in LMFDB)