Invariants
| Base field: | $\F_{29}$ |
| Dimension: | $2$ |
| L-polynomial: | $1 - 13 x + 83 x^{2} - 377 x^{3} + 841 x^{4}$ |
| Frobenius angles: | $\pm0.0469645722643$, $\pm0.430084384264$ |
| Angle rank: | $2$ (numerical) |
| Number field: | 4.0.1318797.1 |
| Galois group: | $D_{4}$ |
| Jacobians: | $4$ |
| Isomorphism classes: | 4 |
This isogeny class is simple and geometrically simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
| $p$-rank: | $2$ |
| Slopes: | $[0, 0, 1, 1]$ |
Point counts
Point counts of the abelian variety
| $r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
|---|---|---|---|---|---|
| $A(\F_{q^r})$ | $535$ | $703525$ | $592598635$ | $498501633925$ | $420404419718800$ |
| $r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
|---|---|---|---|---|---|---|---|---|---|---|
| $C(\F_{q^r})$ | $17$ | $839$ | $24299$ | $704811$ | $20496382$ | $594804647$ | $17250004243$ | $500246136691$ | $14507137145321$ | $420707205369974$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 4 curves (of which all are hyperelliptic):
- $y^2=27 x^6+14 x^5+10 x^4+8 x^3+5 x^2+11 x+12$
- $y^2=17 x^6+11 x^5+17 x^4+12 x^3+24 x^2+19 x+11$
- $y^2=18 x^6+14 x^5+21 x^4+5 x^3+18 x^2+8 x+6$
- $y^2=28 x^6+9 x^5+13 x^3+12 x^2+18 x+2$
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{29}$.
Endomorphism algebra over $\F_{29}$| The endomorphism algebra of this simple isogeny class is 4.0.1318797.1. |
Base change
This is a primitive isogeny class.
Twists
Below is a list of all twists of this isogeny class.
| Twist | Extension degree | Common base change |
|---|---|---|
| 2.29.n_df | $2$ | (not in LMFDB) |