Invariants
| Base field: | $\F_{29}$ |
| Dimension: | $2$ |
| L-polynomial: | $1 - 9 x + 70 x^{2} - 261 x^{3} + 841 x^{4}$ |
| Frobenius angles: | $\pm0.260020945481$, $\pm0.451708829335$ |
| Angle rank: | $2$ (numerical) |
| Number field: | 4.0.7609932.1 |
| Galois group: | $D_{4}$ |
| Jacobians: | $22$ |
| Cyclic group of points: | yes |
This isogeny class is simple and geometrically simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
| $p$-rank: | $2$ |
| Slopes: | $[0, 0, 1, 1]$ |
Point counts
Point counts of the abelian variety
| $r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
|---|---|---|---|---|---|
| $A(\F_{q^r})$ | $642$ | $758844$ | $604124568$ | $500448511872$ | $420688596529722$ |
| $r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
|---|---|---|---|---|---|---|---|---|---|---|
| $C(\F_{q^r})$ | $21$ | $901$ | $24768$ | $707569$ | $20510241$ | $594844090$ | $17249883861$ | $500244548545$ | $14507134852464$ | $420707248203661$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 22 curves (of which all are hyperelliptic):
- $y^2=21 x^6+25 x^5+16 x^4+18 x^3+4 x^2+3 x+11$
- $y^2=26 x^6+23 x^5+18 x^4+17 x^3+21 x^2+8 x+27$
- $y^2=14 x^6+22 x^5+12 x^4+7 x^3+10 x^2+27 x+3$
- $y^2=10 x^6+15 x^5+24 x^4+6 x^3+15 x^2+27 x+17$
- $y^2=18 x^6+27 x^5+22 x^4+3 x^2+25 x+20$
- $y^2=17 x^6+13 x^4+20 x^3+6 x^2+10$
- $y^2=4 x^6+26 x^5+19 x^4+5 x^3+9 x^2+25 x+26$
- $y^2=20 x^6+5 x^5+23 x^4+2 x^3+20 x^2+14 x+27$
- $y^2=18 x^6+27 x^5+15 x^3+5 x+19$
- $y^2=13 x^6+9 x^5+10 x^4+x^3+x^2+5 x+13$
- $y^2=6 x^6+27 x^5+6 x^4+18 x^3+25 x^2+14 x+24$
- $y^2=23 x^6+9 x^5+9 x^4+17 x^3+26 x^2+19 x+6$
- $y^2=19 x^6+x^5+x^4+10 x^3+23 x^2+19 x+8$
- $y^2=14 x^6+9 x^5+16 x^4+24 x^3+7 x^2+16 x+19$
- $y^2=21 x^6+8 x^5+27 x^4+25 x^3+25 x+6$
- $y^2=19 x^6+2 x^5+17 x^4+17 x^3+7 x^2+27 x+13$
- $y^2=9 x^6+11 x^5+17 x^4+10 x^3+28 x^2+28 x+10$
- $y^2=28 x^6+19 x^5+19 x^4+26 x^3+27 x^2+x+4$
- $y^2=3 x^6+27 x^5+11 x^4+8 x^3+23 x^2+7 x+26$
- $y^2=10 x^6+3 x^5+27 x^4+15 x^3+x^2+3 x+2$
- $y^2=15 x^6+16 x^5+18 x^4+17 x^3+5 x^2+16 x+27$
- $y^2=25 x^6+17 x^5+27 x^4+2 x^3+5 x^2+6 x+13$
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{29}$.
Endomorphism algebra over $\F_{29}$| The endomorphism algebra of this simple isogeny class is 4.0.7609932.1. |
Base change
This is a primitive isogeny class.
Twists
Below is a list of all twists of this isogeny class.
| Twist | Extension degree | Common base change |
|---|---|---|
| 2.29.j_cs | $2$ | (not in LMFDB) |