Invariants
Base field: | $\F_{29}$ |
Dimension: | $2$ |
L-polynomial: | $1 - 4 x + 6 x^{2} - 116 x^{3} + 841 x^{4}$ |
Frobenius angles: | $\pm0.157204550713$, $\pm0.670026471503$ |
Angle rank: | $2$ (numerical) |
Number field: | 4.0.1756160.2 |
Galois group: | $D_{4}$ |
Jacobians: | $56$ |
This isogeny class is simple and geometrically simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
$p$-rank: | $2$ |
Slopes: | $[0, 0, 1, 1]$ |
Point counts
Point counts of the abelian variety
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
---|---|---|---|---|---|
$A(\F_{q^r})$ | $728$ | $704704$ | $586588184$ | $501354613760$ | $420936946277848$ |
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
---|---|---|---|---|---|---|---|---|---|---|
$C(\F_{q^r})$ | $26$ | $838$ | $24050$ | $708846$ | $20522346$ | $594822646$ | $17250273794$ | $500247990366$ | $14507140406330$ | $420707248234278$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 56 curves (of which all are hyperelliptic):
- $y^2=5 x^6+7 x^5+2 x^4+10 x^3+16 x^2+10 x+22$
- $y^2=8 x^6+20 x^5+18 x^4+23 x^3+23 x^2+x+25$
- $y^2=17 x^6+7 x^5+10 x^4+14 x^3+19 x^2+10 x+17$
- $y^2=15 x^6+4 x^5+3 x^4+5 x^3+18 x^2+2 x+27$
- $y^2=7 x^6+28 x^5+13 x^4+23 x^3+13 x^2+22 x+26$
- $y^2=22 x^6+28 x^5+24 x^4+5 x^3+14 x^2+10 x+19$
- $y^2=10 x^6+24 x^5+20 x^4+16 x^3+16 x^2+11 x$
- $y^2=3 x^6+7 x^5+27 x^4+24 x^3+14 x^2+16 x+18$
- $y^2=19 x^6+8 x^5+11 x^4+12 x^3+19 x+13$
- $y^2=8 x^6+2 x^5+13 x^4+15 x^3+13 x^2+4 x+18$
- $y^2=18 x^6+11 x^3+9 x^2+20 x+14$
- $y^2=11 x^6+11 x^5+3 x^4+2 x^3+9 x^2+14 x+27$
- $y^2=26 x^6+6 x^5+9 x^4+5 x^3+7 x^2+10 x+8$
- $y^2=25 x^6+27 x^5+2 x^4+26 x^3+5 x^2+26 x+8$
- $y^2=2 x^6+19 x^5+3 x^4+23 x^3+14 x^2+x+1$
- $y^2=21 x^6+14 x^5+10 x^4+9 x^3+28 x^2+13 x+6$
- $y^2=18 x^6+22 x^5+7 x^4+24 x^3+13 x^2+4 x+9$
- $y^2=16 x^6+4 x^5+17 x^4+x^3+22 x^2+16 x+9$
- $y^2=11 x^6+14 x^5+11 x^4+16 x^3+27 x^2+19 x+4$
- $y^2=18 x^6+23 x^5+x^4+7 x^3+8 x^2+28 x+21$
- and 36 more
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{29}$.
Endomorphism algebra over $\F_{29}$The endomorphism algebra of this simple isogeny class is 4.0.1756160.2. |
Base change
This is a primitive isogeny class.
Twists
Below is a list of all twists of this isogeny class.
Twist | Extension degree | Common base change |
---|---|---|
2.29.e_g | $2$ | (not in LMFDB) |