Invariants
| Base field: | $\F_{29}$ |
| Dimension: | $2$ |
| L-polynomial: | $( 1 - 6 x + 29 x^{2} )( 1 + 3 x + 29 x^{2} )$ |
| $1 - 3 x + 40 x^{2} - 87 x^{3} + 841 x^{4}$ | |
| Frobenius angles: | $\pm0.311919362152$, $\pm0.589851478136$ |
| Angle rank: | $2$ (numerical) |
| Jacobians: | $72$ |
This isogeny class is not simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
| $p$-rank: | $2$ |
| Slopes: | $[0, 0, 1, 1]$ |
Point counts
Point counts of the abelian variety
| $r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
|---|---|---|---|---|---|
| $A(\F_{q^r})$ | $792$ | $769824$ | $596556576$ | $500585754240$ | $420856108660152$ |
| $r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
|---|---|---|---|---|---|---|---|---|---|---|
| $C(\F_{q^r})$ | $27$ | $913$ | $24462$ | $707761$ | $20518407$ | $594772486$ | $17249414643$ | $500247289921$ | $14507156547558$ | $420707232524953$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 72 curves (of which all are hyperelliptic):
- $y^2=15 x^6+23 x^5+18 x^4+3 x^3+7 x^2+13 x+20$
- $y^2=8 x^6+6 x^5+14 x^4+8 x^3+20 x^2+16 x+25$
- $y^2=16 x^6+7 x^5+3 x^4+4 x^2+23 x+3$
- $y^2=5 x^6+10 x^5+23 x^3+11 x^2+25 x+20$
- $y^2=17 x^6+16 x^5+14 x^4+28 x^3+17 x^2+4 x+7$
- $y^2=25 x^6+3 x^5+x^4+22 x^3+24 x^2+16 x+23$
- $y^2=23 x^6+5 x^5+18 x^4+27 x^3+28 x^2+23 x+27$
- $y^2=21 x^6+15 x^5+15 x^4+24 x^3+23 x^2+25 x+1$
- $y^2=20 x^6+25 x^5+28 x^4+20 x^3+22 x^2+15 x+24$
- $y^2=13 x^6+11 x^5+11 x^4+27 x^3+24 x^2+12 x+14$
- $y^2=12 x^6+5 x^5+12 x^4+11 x^3+x^2+13 x+15$
- $y^2=18 x^6+15 x^5+7 x^4+14 x^3+25 x^2+18 x+26$
- $y^2=27 x^6+27 x^5+9 x^3+9 x^2+12 x+3$
- $y^2=6 x^6+16 x^5+18 x^4+22 x^3+11 x^2+27 x+1$
- $y^2=18 x^6+15 x^5+17 x^4+26 x^3+6 x^2+12 x+11$
- $y^2=x^6+22 x^4+25 x^3+28 x^2+21 x+23$
- $y^2=2 x^6+3 x^5+10 x^4+22 x^3+6 x^2+4 x+11$
- $y^2=21 x^6+3 x^5+7 x^4+6 x^3+14 x^2+20 x+4$
- $y^2=24 x^6+14 x^5+17 x^4+x^3+25 x^2+25 x+19$
- $y^2=3 x^5+12 x^4+13 x^3+21 x^2+9 x+1$
- and 52 more
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{29}$.
Endomorphism algebra over $\F_{29}$| The isogeny class factors as 1.29.ag $\times$ 1.29.d and its endomorphism algebra is a direct product of the endomorphism algebras for each isotypic factor. The endomorphism algebra for each factor is: |
Base change
This is a primitive isogeny class.
Twists
Below is a list of all twists of this isogeny class.
| Twist | Extension degree | Common base change |
|---|---|---|
| 2.29.aj_cy | $2$ | (not in LMFDB) |
| 2.29.d_bo | $2$ | (not in LMFDB) |
| 2.29.j_cy | $2$ | (not in LMFDB) |