Properties

Label 2.29.ad_bo
Base field $\F_{29}$
Dimension $2$
$p$-rank $2$
Ordinary yes
Supersingular no
Simple no
Geometrically simple no
Primitive yes
Principally polarizable yes
Contains a Jacobian yes

Related objects

Downloads

Learn more

Invariants

Base field:  $\F_{29}$
Dimension:  $2$
L-polynomial:  $( 1 - 6 x + 29 x^{2} )( 1 + 3 x + 29 x^{2} )$
  $1 - 3 x + 40 x^{2} - 87 x^{3} + 841 x^{4}$
Frobenius angles:  $\pm0.311919362152$, $\pm0.589851478136$
Angle rank:  $2$ (numerical)
Jacobians:  $72$

This isogeny class is not simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.

Newton polygon

This isogeny class is ordinary.

$p$-rank:  $2$
Slopes:  $[0, 0, 1, 1]$

Point counts

Point counts of the abelian variety

$r$ $1$ $2$ $3$ $4$ $5$
$A(\F_{q^r})$ $792$ $769824$ $596556576$ $500585754240$ $420856108660152$

Point counts of the curve

$r$ $1$ $2$ $3$ $4$ $5$ $6$ $7$ $8$ $9$ $10$
$C(\F_{q^r})$ $27$ $913$ $24462$ $707761$ $20518407$ $594772486$ $17249414643$ $500247289921$ $14507156547558$ $420707232524953$

Jacobians and polarizations

This isogeny class is principally polarizable and contains the Jacobians of 72 curves (of which all are hyperelliptic):

Decomposition and endomorphism algebra

All geometric endomorphisms are defined over $\F_{29}$.

Endomorphism algebra over $\F_{29}$
The isogeny class factors as 1.29.ag $\times$ 1.29.d and its endomorphism algebra is a direct product of the endomorphism algebras for each isotypic factor. The endomorphism algebra for each factor is:

Base change

This is a primitive isogeny class.

Twists

Below is a list of all twists of this isogeny class.

TwistExtension degreeCommon base change
2.29.aj_cy$2$(not in LMFDB)
2.29.d_bo$2$(not in LMFDB)
2.29.j_cy$2$(not in LMFDB)