Invariants
Base field: | $\F_{29}$ |
Dimension: | $2$ |
L-polynomial: | $1 - 2 x + 26 x^{2} - 58 x^{3} + 841 x^{4}$ |
Frobenius angles: | $\pm0.284602433083$, $\pm0.645206471610$ |
Angle rank: | $2$ (numerical) |
Number field: | 4.0.448668.1 |
Galois group: | $D_{4}$ |
Jacobians: | $44$ |
Isomorphism classes: | 80 |
This isogeny class is simple and geometrically simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
$p$-rank: | $2$ |
Slopes: | $[0, 0, 1, 1]$ |
Point counts
Point counts of the abelian variety
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
---|---|---|---|---|---|
$A(\F_{q^r})$ | $808$ | $749824$ | $594152296$ | $501626257408$ | $420892668997288$ |
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
---|---|---|---|---|---|---|---|---|---|---|
$C(\F_{q^r})$ | $28$ | $890$ | $24364$ | $709230$ | $20520188$ | $594748874$ | $17249627276$ | $500246736478$ | $14507141178844$ | $420707263461530$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 44 curves (of which all are hyperelliptic):
- $y^2=6 x^6+10 x^5+27 x^4+14 x^3+12 x^2+2 x+25$
- $y^2=6 x^6+22 x^5+9 x^4+7 x^3+17 x^2+18 x$
- $y^2=11 x^6+15 x^5+26 x^4+x^3+9 x^2+13 x+3$
- $y^2=24 x^6+28 x^5+2 x^4+9 x^3+3 x^2+14 x+12$
- $y^2=12 x^6+26 x^5+17 x^4+16 x^3+27 x^2+16 x+20$
- $y^2=8 x^6+14 x^5+25 x^4+15 x^3+2 x^2+25 x+21$
- $y^2=5 x^6+22 x^5+10 x^4+27 x^3+15 x^2+2 x+14$
- $y^2=23 x^6+15 x^5+7 x^4+5 x^3+16 x^2+28 x+20$
- $y^2=2 x^6+26 x^5+14 x^4+2 x^3+3 x^2+18 x+25$
- $y^2=25 x^6+3 x^5+15 x^4+24 x^3+20 x^2+4 x$
- $y^2=19 x^6+13 x^5+14 x^4+14 x^3+9 x^2+3 x+15$
- $y^2=16 x^6+9 x^5+2 x^4+22 x^3+27 x^2+18 x+18$
- $y^2=2 x^6+20 x^5+25 x^4+26 x^3+23 x^2+28 x+28$
- $y^2=4 x^6+25 x^5+21 x^4+18 x^3+16 x^2+11 x+10$
- $y^2=22 x^6+20 x^5+19 x^4+16 x^3+7 x^2+4 x+4$
- $y^2=2 x^6+x^5+11 x^4+22 x^3+7 x^2+22 x+25$
- $y^2=x^6+12 x^5+2 x^4+28 x^3+5 x^2+13 x+1$
- $y^2=22 x^6+28 x^5+5 x^4+14 x^3+14 x^2+2 x+4$
- $y^2=13 x^6+24 x^5+19 x^4+7 x^3+23 x^2+17 x$
- $y^2=x^6+10 x^5+21 x^4+25 x^2+22 x+6$
- and 24 more
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{29}$.
Endomorphism algebra over $\F_{29}$The endomorphism algebra of this simple isogeny class is 4.0.448668.1. |
Base change
This is a primitive isogeny class.
Twists
Below is a list of all twists of this isogeny class.
Twist | Extension degree | Common base change |
---|---|---|
2.29.c_ba | $2$ | (not in LMFDB) |