Invariants
Base field: | $\F_{29}$ |
Dimension: | $2$ |
L-polynomial: | $( 1 - x + 29 x^{2} )( 1 + x + 29 x^{2} )$ |
$1 + 57 x^{2} + 841 x^{4}$ | |
Frobenius angles: | $\pm0.470403040323$, $\pm0.529596959677$ |
Angle rank: | $1$ (numerical) |
Jacobians: | $10$ |
This isogeny class is not simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
$p$-rank: | $2$ |
Slopes: | $[0, 0, 1, 1]$ |
Point counts
Point counts of the abelian variety
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
---|---|---|---|---|---|
$A(\F_{q^r})$ | $899$ | $808201$ | $594864704$ | $498033661225$ | $420707257830779$ |
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
---|---|---|---|---|---|---|---|---|---|---|
$C(\F_{q^r})$ | $30$ | $956$ | $24390$ | $704148$ | $20511150$ | $594906086$ | $17249876310$ | $500244331108$ | $14507145975870$ | $420707282361356$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 10 curves (of which all are hyperelliptic):
- $y^2=22 x^6+12 x^5+14 x^4+21 x^3+14 x^2+12 x+22$
- $y^2=15 x^6+24 x^5+28 x^4+13 x^3+28 x^2+24 x+15$
- $y^2=16 x^6+24 x^5+23 x^3+24 x+16$
- $y^2=3 x^6+19 x^5+17 x^3+19 x+3$
- $y^2=6 x^6+26 x^5+18 x^4+17 x^3+18 x^2+26 x+6$
- $y^2=12 x^6+23 x^5+7 x^4+5 x^3+7 x^2+23 x+12$
- $y^2=13 x^6+4 x^5+15 x^4+7 x^3+15 x^2+4 x+13$
- $y^2=26 x^6+8 x^5+x^4+14 x^3+x^2+8 x+26$
- $y^2=12 x^6+10 x^5+2 x^4+26 x^3+2 x^2+10 x+12$
- $y^2=24 x^6+20 x^5+4 x^4+23 x^3+4 x^2+20 x+24$
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{29^{2}}$.
Endomorphism algebra over $\F_{29}$The isogeny class factors as 1.29.ab $\times$ 1.29.b and its endomorphism algebra is a direct product of the endomorphism algebras for each isotypic factor. The endomorphism algebra for each factor is: |
The base change of $A$ to $\F_{29^{2}}$ is 1.841.cf 2 and its endomorphism algebra is $\mathrm{M}_{2}($\(\Q(\sqrt{-115}) \)$)$ |
Base change
This is a primitive isogeny class.