Invariants
| Base field: | $\F_{2^{8}}$ |
| Dimension: | $2$ |
| L-polynomial: | $1 - 58 x + 1347 x^{2} - 14848 x^{3} + 65536 x^{4}$ |
| Frobenius angles: | $\pm0.0591285773829$, $\pm0.188509518148$ |
| Angle rank: | $2$ (numerical) |
| Number field: | 4.0.6419520.1 |
| Galois group: | $D_{4}$ |
This isogeny class is simple and geometrically simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
| $p$-rank: | $2$ |
| Slopes: | $[0, 0, 1, 1]$ |
Point counts
Point counts of the abelian variety
| $r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
|---|---|---|---|---|---|
| $A(\F_{q^r})$ | $51978$ | $4251280620$ | $281386448471358$ | $18446732588498124000$ | $1208926707252173539280058$ |
| $r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
|---|---|---|---|---|---|---|---|---|---|---|
| $C(\F_{q^r})$ | $199$ | $64867$ | $16771939$ | $4294964623$ | $1099512435079$ | $281474992677427$ | $72057594182760259$ | $18446744072764650463$ | $4722366482803919066119$ | $1208925819613193912079427$ |
Jacobians and polarizations
This isogeny class contains a Jacobian and hence is principally polarizable.
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{2^{8}}$.
Endomorphism algebra over $\F_{2^{8}}$| The endomorphism algebra of this simple isogeny class is 4.0.6419520.1. |
Base change
This is a primitive isogeny class.
Twists
Below is a list of all twists of this isogeny class.
| Twist | Extension degree | Common base change |
|---|---|---|
| 2.256.cg_bzv | $2$ | (not in LMFDB) |