Properties

Label 2.243.acg_byz
Base field $\F_{3^{5}}$
Dimension $2$
$p$-rank $2$
Ordinary yes
Supersingular no
Simple yes
Geometrically simple yes
Primitive yes
Principally polarizable yes
Contains a Jacobian yes

Related objects

Downloads

Learn more

Invariants

Base field:  $\F_{3^{5}}$
Dimension:  $2$
L-polynomial:  $1 - 58 x + 1325 x^{2} - 14094 x^{3} + 59049 x^{4}$
Frobenius angles:  $\pm0.0705529335341$, $\pm0.154284978955$
Angle rank:  $2$ (numerical)
Number field:  4.0.634432.1
Galois group:  $D_{4}$

This isogeny class is simple and geometrically simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.

Newton polygon

This isogeny class is ordinary.

$p$-rank:  $2$
Slopes:  $[0, 0, 1, 1]$

Point counts

Point counts of the abelian variety

$r$ $1$ $2$ $3$ $4$ $5$
$A(\F_{q^r})$ $46223$ $3444861521$ $205792962124964$ $12157553334846324841$ $717898466293546771418023$

Point counts of the curve

$r$ $1$ $2$ $3$ $4$ $5$ $6$ $7$ $8$ $9$ $10$
$C(\F_{q^r})$ $186$ $58336$ $14342064$ $3486752244$ $847289174306$ $205891153167646$ $50031545523687830$ $12157665465627182948$ $2954312706632844946848$ $717897987692644869473296$

Jacobians and polarizations

This isogeny class contains a Jacobian and hence is principally polarizable.

Decomposition and endomorphism algebra

All geometric endomorphisms are defined over $\F_{3^{5}}$.

Endomorphism algebra over $\F_{3^{5}}$
The endomorphism algebra of this simple isogeny class is 4.0.634432.1.

Base change

This is a primitive isogeny class.

Twists

Below is a list of all twists of this isogeny class.

TwistExtension degreeCommon base change
2.243.cg_byz$2$(not in LMFDB)