Invariants
| Base field: | $\F_{3^{5}}$ |
| Dimension: | $2$ |
| L-polynomial: | $( 1 - 28 x + 243 x^{2} )( 1 - 27 x + 243 x^{2} )$ |
| $1 - 55 x + 1242 x^{2} - 13365 x^{3} + 59049 x^{4}$ | |
| Frobenius angles: | $\pm0.144947286894$, $\pm0.166666666667$ |
| Angle rank: | $1$ (numerical) |
This isogeny class is not simple, primitive, not ordinary, and not supersingular. It is principally polarizable.
Newton polygon
| $p$-rank: | $1$ |
| Slopes: | $[0, 1/2, 1/2, 1]$ |
Point counts
Point counts of the abelian variety
| $r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
|---|---|---|---|---|---|
| $A(\F_{q^r})$ | $46872$ | $3455028864$ | $205869063474144$ | $12157973500754704896$ | $717900350592743310476232$ |
Point counts of the (virtual) curve
| $r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
|---|---|---|---|---|---|---|---|---|---|---|
| $C(\F_{q^r})$ | $189$ | $58509$ | $14347368$ | $3486872745$ | $847291398219$ | $205891187118678$ | $50031545933302353$ | $12157665468659143569$ | $2954312706613473384984$ | $717897987691273161799389$ |
Jacobians and polarizations
This isogeny class is principally polarizable, but does not contain a Jacobian.
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{3^{30}}$.
Endomorphism algebra over $\F_{3^{5}}$| The isogeny class factors as 1.243.abc $\times$ 1.243.abb and its endomorphism algebra is a direct product of the endomorphism algebras for each isotypic factor. The endomorphism algebra for each factor is: |
The base change of $A$ to $\F_{3^{30}}$ is 1.205891132094649.cfpwcs $\times$ 1.205891132094649.ckuukc. The endomorphism algebra for each factor is:
|
- Endomorphism algebra over $\F_{3^{10}}$
The base change of $A$ to $\F_{3^{10}}$ is 1.59049.alm $\times$ 1.59049.ajj. The endomorphism algebra for each factor is: - Endomorphism algebra over $\F_{3^{15}}$
The base change of $A$ to $\F_{3^{15}}$ is 1.14348907.achg $\times$ 1.14348907.a. The endomorphism algebra for each factor is:
Base change
This is a primitive isogeny class.