Properties

Label 2.243.acc_bum
Base field $\F_{3^{5}}$
Dimension $2$
$p$-rank $2$
Ordinary yes
Supersingular no
Simple yes
Geometrically simple yes
Primitive yes
Principally polarizable yes
Contains a Jacobian yes

Related objects

Downloads

Learn more

Invariants

Base field:  $\F_{3^{5}}$
Dimension:  $2$
L-polynomial:  $1 - 54 x + 1208 x^{2} - 13122 x^{3} + 59049 x^{4}$
Frobenius angles:  $\pm0.100173524283$, $\pm0.214626820824$
Angle rank:  $2$ (numerical)
Number field:  4.0.27662656.1
Galois group:  $D_{4}$

This isogeny class is simple and geometrically simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.

Newton polygon

This isogeny class is ordinary.

$p$-rank:  $2$
Slopes:  $[0, 0, 1, 1]$

Point counts

Point counts of the abelian variety

$r$ $1$ $2$ $3$ $4$ $5$
$A(\F_{q^r})$ $47082$ $3457419588$ $205874874428706$ $12157910834157489744$ $717899510784644229275682$

Point counts of the curve

$r$ $1$ $2$ $3$ $4$ $5$ $6$ $7$ $8$ $9$ $10$
$C(\F_{q^r})$ $190$ $58550$ $14347774$ $3486854774$ $847290407050$ $205891158800150$ $50031545359971610$ $12157665460321957214$ $2954312706548173909582$ $717897987692028346067750$

Jacobians and polarizations

This isogeny class contains a Jacobian and hence is principally polarizable.

Decomposition and endomorphism algebra

All geometric endomorphisms are defined over $\F_{3^{5}}$.

Endomorphism algebra over $\F_{3^{5}}$
The endomorphism algebra of this simple isogeny class is 4.0.27662656.1.

Base change

This is a primitive isogeny class.

Twists

Below is a list of all twists of this isogeny class.

TwistExtension degreeCommon base change
2.243.cc_bum$2$(not in LMFDB)