Invariants
| Base field: | $\F_{23}$ |
| Dimension: | $2$ |
| L-polynomial: | $( 1 + 3 x + 23 x^{2} )( 1 + 7 x + 23 x^{2} )$ |
| $1 + 10 x + 67 x^{2} + 230 x^{3} + 529 x^{4}$ | |
| Frobenius angles: | $\pm0.601257449372$, $\pm0.760387042310$ |
| Angle rank: | $2$ (numerical) |
| Jacobians: | $18$ |
| Isomorphism classes: | 30 |
| Cyclic group of points: | yes |
This isogeny class is not simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
| $p$-rank: | $2$ |
| Slopes: | $[0, 0, 1, 1]$ |
Point counts
Point counts of the abelian variety
| $r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
|---|---|---|---|---|---|
| $A(\F_{q^r})$ | $837$ | $298809$ | $144191664$ | $78517742121$ | $41432617697157$ |
| $r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
|---|---|---|---|---|---|---|---|---|---|---|
| $C(\F_{q^r})$ | $34$ | $564$ | $11848$ | $280580$ | $6437294$ | $148032558$ | $3404794658$ | $78310907524$ | $1801155765784$ | $41426494224564$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 18 curves (of which all are hyperelliptic):
- $y^2=14 x^6+5 x^5+21 x^4+16 x^3+17 x^2+19 x+19$
- $y^2=6 x^6+6 x^5+7 x^4+17 x^3+7 x^2+6 x+6$
- $y^2=16 x^6+20 x^5+13 x^4+2 x^3+3 x^2+2 x+17$
- $y^2=5 x^6+12 x^5+9 x^4+14 x^3+9 x^2+12 x+5$
- $y^2=9 x^6+11 x^5+11 x^4+8 x^3+3 x^2+2 x+17$
- $y^2=3 x^6+8 x^5+17 x^4+18 x^3+17 x^2+8 x+3$
- $y^2=x^6+17 x^5+9 x^4+14 x^3+9 x^2+14 x+21$
- $y^2=10 x^6+5 x^5+2 x^4+11 x^3+5 x^2+4 x+13$
- $y^2=9 x^6+6 x^5+4 x^4+5 x^3+x^2+2 x+12$
- $y^2=10 x^6+15 x^5+6 x^4+8 x^3+6 x^2+15 x+10$
- $y^2=21 x^6+3 x^5+9 x^4+12 x^3+9 x^2+3 x+21$
- $y^2=19 x^6+19 x^5+4 x^4+13 x^3+4 x^2+19 x+19$
- $y^2=20 x^6+20 x^5+3 x^4+10 x^3+5 x^2+15 x+8$
- $y^2=5 x^6+5 x^5+11 x^4+18 x^3+12 x^2+2 x+2$
- $y^2=12 x^6+20 x^5+20 x^4+18 x^3+20 x^2+20 x+12$
- $y^2=9 x^6+15 x^5+11 x^4+20 x^3+11 x^2+15 x+9$
- $y^2=13 x^6+21 x^5+16 x^4+13 x^3+16 x^2+21 x+13$
- $y^2=16 x^6+14 x^5+21 x^4+2 x^3+21 x^2+8 x+3$
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{23}$.
Endomorphism algebra over $\F_{23}$| The isogeny class factors as 1.23.d $\times$ 1.23.h and its endomorphism algebra is a direct product of the endomorphism algebras for each isotypic factor. The endomorphism algebra for each factor is: |
Base change
This is a primitive isogeny class.
Twists
Below is a list of all twists of this isogeny class.
| Twist | Extension degree | Common base change |
|---|---|---|
| 2.23.ak_cp | $2$ | (not in LMFDB) |
| 2.23.ae_z | $2$ | (not in LMFDB) |
| 2.23.e_z | $2$ | (not in LMFDB) |