Invariants
Base field: | $\F_{23}$ |
Dimension: | $2$ |
L-polynomial: | $( 1 - 2 x + 23 x^{2} )( 1 + 8 x + 23 x^{2} )$ |
$1 + 6 x + 30 x^{2} + 138 x^{3} + 529 x^{4}$ | |
Frobenius angles: | $\pm0.433137181604$, $\pm0.813988011405$ |
Angle rank: | $2$ (numerical) |
Jacobians: | $28$ |
This isogeny class is not simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
$p$-rank: | $2$ |
Slopes: | $[0, 0, 1, 1]$ |
Point counts
Point counts of the abelian variety
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
---|---|---|---|---|---|
$A(\F_{q^r})$ | $704$ | $292864$ | $149150144$ | $78318862336$ | $41366340323264$ |
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
---|---|---|---|---|---|---|---|---|---|---|
$C(\F_{q^r})$ | $30$ | $554$ | $12258$ | $279870$ | $6426990$ | $148066058$ | $3404873586$ | $78311067454$ | $1801151509374$ | $41426493059114$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 28 curves (of which all are hyperelliptic):
- $y^2=5 x^6+19 x^5+13 x^4+7 x^3+16 x^2+18 x+5$
- $y^2=18 x^6+9 x^5+14 x^4+3 x^3+14 x^2+9 x+18$
- $y^2=11 x^6+17 x^5+2 x^4+14 x^3+21 x^2+18 x+18$
- $y^2=2 x^6+22 x^5+2 x^4+12 x^3+21 x^2+18 x+5$
- $y^2=5 x^6+3 x^5+12 x^4+4 x^3+12 x^2+3 x+5$
- $y^2=6 x^6+5 x^5+13 x^4+7 x^3+17 x^2+21 x+4$
- $y^2=11 x^6+6 x^5+6 x^4+7 x^3+9 x^2+18 x+12$
- $y^2=2 x^6+4 x^5+19 x^4+7 x^3+2 x^2+8 x+4$
- $y^2=21 x^6+5 x^5+7 x^4+14 x^3+14 x^2+22 x+4$
- $y^2=2 x^6+5 x^5+22 x^4+8 x^3+5 x^2+7 x+9$
- $y^2=8 x^6+19 x^4+7 x^3+18 x^2+5 x+1$
- $y^2=12 x^6+2 x^5+9 x^4+21 x^3+9 x^2+2 x+12$
- $y^2=20 x^6+6 x^5+6 x^3+6 x^2+8 x+18$
- $y^2=9 x^6+13 x^5+10 x^4+8 x^3+4 x^2+17 x+6$
- $y^2=2 x^6+14 x^5+6 x^4+4 x^3+8 x^2+10 x+16$
- $y^2=8 x^6+18 x^5+14 x^4+12 x^3+17 x^2+15 x+2$
- $y^2=18 x^6+4 x^5+8 x^4+17 x^3+8 x^2+4 x+18$
- $y^2=13 x^6+8 x^5+5 x^4+2 x^3+12 x^2+16 x+14$
- $y^2=15 x^6+16 x^5+21 x^4+21 x^3+14 x^2+9 x+22$
- $y^2=13 x^6+11 x^5+3 x^4+3 x^3+19 x^2+5 x+8$
- $y^2=7 x^6+3 x^5+8 x^4+22 x^3+18 x^2+2 x+18$
- $y^2=9 x^6+6 x^5+21 x^4+10 x^3+16 x^2+20 x+3$
- $y^2=11 x^5+10 x^4+19 x^3+18 x^2+19 x$
- $y^2=8 x^6+16 x^5+21 x^4+10 x^3+17 x^2+13 x+7$
- $y^2=13 x^6+20 x^5+20 x^4+18 x^3+15 x^2+17 x+2$
- $y^2=4 x^6+19 x^5+10 x^4+12 x^3+15 x^2+4 x+1$
- $y^2=7 x^6+11 x^5+16 x^4+21 x^3+20 x^2+19 x$
- $y^2=15 x^6+x^4+10 x^3+10 x^2+14 x+3$
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{23}$.
Endomorphism algebra over $\F_{23}$The isogeny class factors as 1.23.ac $\times$ 1.23.i and its endomorphism algebra is a direct product of the endomorphism algebras for each isotypic factor. The endomorphism algebra for each factor is: |
Base change
This is a primitive isogeny class.
Twists
Below is a list of all twists of this isogeny class.
Twist | Extension degree | Common base change |
---|---|---|
2.23.ak_ck | $2$ | (not in LMFDB) |
2.23.ag_be | $2$ | (not in LMFDB) |
2.23.k_ck | $2$ | (not in LMFDB) |