Invariants
Base field: | $\F_{23}$ |
Dimension: | $2$ |
L-polynomial: | $1 - 4 x + 38 x^{2} - 92 x^{3} + 529 x^{4}$ |
Frobenius angles: | $\pm0.307070252095$, $\pm0.548778510523$ |
Angle rank: | $2$ (numerical) |
Number field: | 4.0.201024.4 |
Galois group: | $D_{4}$ |
Jacobians: | $42$ |
This isogeny class is simple and geometrically simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
$p$-rank: | $2$ |
Slopes: | $[0, 0, 1, 1]$ |
Point counts
Point counts of the abelian variety
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
---|---|---|---|---|---|
$A(\F_{q^r})$ | $472$ | $313408$ | $149450776$ | $78291825664$ | $41445547940632$ |
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
---|---|---|---|---|---|---|---|---|---|---|
$C(\F_{q^r})$ | $20$ | $590$ | $12284$ | $279774$ | $6439300$ | $148029230$ | $3404618860$ | $78310719934$ | $1801157273972$ | $41426524263950$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 42 curves (of which all are hyperelliptic):
- $y^2=14 x^6+17 x^5+15 x^4+7 x^3+18 x^2+13 x+15$
- $y^2=17 x^6+16 x^5+21 x^3+3 x^2+11 x+8$
- $y^2=x^6+11 x^5+17 x^4+15 x^2+16 x+15$
- $y^2=19 x^6+17 x^5+9 x^4+11 x^3+3 x^2+22 x+15$
- $y^2=2 x^6+8 x^5+20 x^3+5 x^2+11 x$
- $y^2=8 x^6+13 x^5+20 x^4+17 x^3+22 x^2+17 x+17$
- $y^2=6 x^6+3 x^5+6 x^4+3 x^3+7 x^2+7 x+16$
- $y^2=2 x^6+3 x^5+8 x^3+19 x^2+3 x+3$
- $y^2=12 x^6+5 x^5+21 x^4+2 x^3+13 x^2+4 x+16$
- $y^2=3 x^6+10 x^5+15 x^4+10 x^3+19 x^2+3 x+19$
- $y^2=9 x^5+22 x^4+16 x^3+10 x^2+11 x+10$
- $y^2=19 x^6+20 x^5+18 x^4+13 x^3+21 x^2+10 x+6$
- $y^2=15 x^6+4 x^5+6 x^4+19 x^3+x^2+6 x+1$
- $y^2=20 x^6+3 x^5+16 x^4+6 x^3+19 x^2+14 x+14$
- $y^2=17 x^6+19 x^5+20 x^4+13 x^3+11 x^2+2 x+21$
- $y^2=5 x^6+6 x^5+15 x^4+17 x^3+7 x^2+4 x+17$
- $y^2=19 x^6+6 x^5+7 x^4+10 x^2+13 x+3$
- $y^2=11 x^6+7 x^5+22 x^4+20 x^3+18 x^2+19 x+18$
- $y^2=16 x^6+9 x^5+x^4+21 x^3+x^2+18 x+19$
- $y^2=14 x^6+13 x^5+6 x^4+3 x^3+13 x^2+11 x+21$
- and 22 more
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{23}$.
Endomorphism algebra over $\F_{23}$The endomorphism algebra of this simple isogeny class is 4.0.201024.4. |
Base change
This is a primitive isogeny class.
Twists
Below is a list of all twists of this isogeny class.
Twist | Extension degree | Common base change |
---|---|---|
2.23.e_bm | $2$ | (not in LMFDB) |