Invariants
Base field: | $\F_{23}$ |
Dimension: | $2$ |
L-polynomial: | $1 - 2 x - 19 x^{2} - 46 x^{3} + 529 x^{4}$ |
Frobenius angles: | $\pm0.0998038482706$, $\pm0.766470514937$ |
Angle rank: | $1$ (numerical) |
Number field: | \(\Q(\sqrt{-3}, \sqrt{-22})\) |
Galois group: | $C_2^2$ |
Jacobians: | $0$ |
This isogeny class is simple but not geometrically simple, primitive, ordinary, and not supersingular.
Newton polygon
This isogeny class is ordinary.
$p$-rank: | $2$ |
Slopes: | $[0, 0, 1, 1]$ |
Point counts
Point counts of the abelian variety
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
---|---|---|---|---|---|
$A(\F_{q^r})$ | $463$ | $258817$ | $144913444$ | $78508772329$ | $41398191368623$ |
Point counts of the (virtual) curve
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
---|---|---|---|---|---|---|---|---|---|---|
$C(\F_{q^r})$ | $22$ | $488$ | $11908$ | $280548$ | $6431942$ | $148050758$ | $3404941562$ | $78310924036$ | $1801157757724$ | $41426517718568$ |
Jacobians and polarizations
This isogeny class is not principally polarizable, and therefore does not contain a Jacobian.
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{23^{3}}$.
Endomorphism algebra over $\F_{23}$The endomorphism algebra of this simple isogeny class is \(\Q(\sqrt{-3}, \sqrt{-22})\). |
The base change of $A$ to $\F_{23^{3}}$ is 1.12167.afa 2 and its endomorphism algebra is $\mathrm{M}_{2}($\(\Q(\sqrt{-22}) \)$)$ |
Base change
This is a primitive isogeny class.