Invariants
| Base field: | $\F_{197}$ | 
| Dimension: | $2$ | 
| L-polynomial: | $1 - 52 x + 1067 x^{2} - 10244 x^{3} + 38809 x^{4}$ | 
| Frobenius angles: | $\pm0.0495399438151$, $\pm0.167628951893$ | 
| Angle rank: | $2$ (numerical) | 
| Number field: | 4.0.542736.2 | 
| Galois group: | $D_{4}$ | 
| Jacobians: | $4$ | 
This isogeny class is simple and geometrically simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
| $p$-rank: | $2$ | 
| Slopes: | $[0, 0, 1, 1]$ | 
Point counts
Point counts of the abelian variety
| $r$ | $1$ | $2$ | $3$ | $4$ | $5$ | 
|---|---|---|---|---|---|
| $A(\F_{q^r})$ | $29581$ | $1484167513$ | $58414372764100$ | $2268417823589269369$ | $88036449421385648571421$ | 
| $r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ | 
|---|---|---|---|---|---|---|---|---|---|---|
| $C(\F_{q^r})$ | $146$ | $38240$ | $7640486$ | $1506115044$ | $296709456466$ | $58451734502750$ | $11514990561085738$ | $2268453124427693764$ | $446885265409643759822$ | $88036397287015566495200$ | 
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 4 curves (of which all are hyperelliptic):
- $y^2=16 x^6+146 x^5+10 x^4+196 x^3+76 x^2+26 x+41$
- $y^2=91 x^6+94 x^5+183 x^4+9 x^3+35 x^2+111 x+46$
- $y^2=14 x^6+87 x^5+132 x^4+6 x^3+41 x^2+169 x+9$
- $y^2=114 x^6+88 x^5+144 x^4+104 x^3+131 x^2+64 x+188$
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{197}$.
Endomorphism algebra over $\F_{197}$| The endomorphism algebra of this simple isogeny class is 4.0.542736.2. | 
Base change
This is a primitive isogeny class.
Twists
Below is a list of all twists of this isogeny class.
| Twist | Extension degree | Common base change | 
|---|---|---|
| 2.197.ca_bpb | $2$ | (not in LMFDB) | 
