Invariants
| Base field: | $\F_{197}$ |
| Dimension: | $2$ |
| L-polynomial: | $( 1 - 27 x + 197 x^{2} )( 1 - 23 x + 197 x^{2} )$ |
| $1 - 50 x + 1015 x^{2} - 9850 x^{3} + 38809 x^{4}$ | |
| Frobenius angles: | $\pm0.0882242067266$, $\pm0.194339516027$ |
| Angle rank: | $2$ (numerical) |
| Jacobians: | $72$ |
This isogeny class is not simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
| $p$-rank: | $2$ |
| Slopes: | $[0, 0, 1, 1]$ |
Point counts
Point counts of the abelian variety
| $r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
|---|---|---|---|---|---|
| $A(\F_{q^r})$ | $29925$ | $1488020625$ | $58434153926400$ | $2268490456054265625$ | $88036659801248398057125$ |
| $r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
|---|---|---|---|---|---|---|---|---|---|---|
| $C(\F_{q^r})$ | $148$ | $38340$ | $7643074$ | $1506163268$ | $296710165508$ | $58451742974070$ | $11514990645526964$ | $2268453125248368388$ | $446885265421874979418$ | $88036397287305461777700$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 72 curves (of which all are hyperelliptic):
- $y^2=171 x^6+16 x^5+106 x^4+177 x^3+27 x^2+159 x+52$
- $y^2=73 x^6+30 x^5+141 x^4+166 x^3+128 x^2+28 x+109$
- $y^2=88 x^6+83 x^5+161 x^4+151 x^3+188 x^2+116 x+26$
- $y^2=58 x^6+125 x^5+137 x^4+140 x^3+19 x^2+155 x+102$
- $y^2=49 x^6+94 x^5+90 x^4+58 x^3+133 x^2+128 x+79$
- $y^2=177 x^6+33 x^5+110 x^4+42 x^3+80 x^2+107 x+82$
- $y^2=81 x^6+191 x^5+47 x^4+147 x^3+151 x^2+85 x+35$
- $y^2=111 x^6+122 x^5+123 x^4+14 x^3+55 x^2+47 x+79$
- $y^2=12 x^6+28 x^5+39 x^4+4 x^3+142 x^2+7 x+70$
- $y^2=12 x^6+150 x^5+131 x^4+85 x^3+178 x^2+193 x+71$
- $y^2=128 x^6+161 x^5+42 x^4+65 x^3+63 x^2+116 x+38$
- $y^2=52 x^6+13 x^5+182 x^4+127 x^3+42 x^2+31 x+165$
- $y^2=195 x^6+45 x^5+160 x^4+30 x^3+37 x^2+45 x+2$
- $y^2=19 x^6+90 x^5+67 x^4+169 x^3+153 x^2+101 x+196$
- $y^2=189 x^6+64 x^5+177 x^4+188 x^3+27 x^2+93 x+12$
- $y^2=80 x^6+83 x^5+187 x^4+93 x^3+62 x^2+85 x+12$
- $y^2=82 x^6+52 x^5+56 x^4+189 x^3+78 x^2+124 x+5$
- $y^2=181 x^6+38 x^5+65 x^4+9 x^3+155 x^2+117 x+121$
- $y^2=73 x^6+15 x^5+102 x^4+118 x^3+194 x^2+7 x+89$
- $y^2=184 x^6+194 x^5+9 x^4+38 x^3+157 x^2+140 x+141$
- and 52 more
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{197}$.
Endomorphism algebra over $\F_{197}$| The isogeny class factors as 1.197.abb $\times$ 1.197.ax and its endomorphism algebra is a direct product of the endomorphism algebras for each isotypic factor. The endomorphism algebra for each factor is: |
Base change
This is a primitive isogeny class.
Twists
Below is a list of all twists of this isogeny class.
| Twist | Extension degree | Common base change |
|---|---|---|
| 2.197.ae_ait | $2$ | (not in LMFDB) |
| 2.197.e_ait | $2$ | (not in LMFDB) |
| 2.197.by_bnb | $2$ | (not in LMFDB) |