Properties

Label 2.197.abx_bma
Base field $\F_{197}$
Dimension $2$
$p$-rank $2$
Ordinary yes
Supersingular no
Simple no
Geometrically simple no
Primitive yes
Principally polarizable yes
Contains a Jacobian yes

Related objects

Downloads

Learn more

Invariants

Base field:  $\F_{197}$
Dimension:  $2$
L-polynomial:  $( 1 - 27 x + 197 x^{2} )( 1 - 22 x + 197 x^{2} )$
  $1 - 49 x + 988 x^{2} - 9653 x^{3} + 38809 x^{4}$
Frobenius angles:  $\pm0.0882242067266$, $\pm0.213320986704$
Angle rank:  $2$ (numerical)
Jacobians:  $60$

This isogeny class is not simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.

Newton polygon

This isogeny class is ordinary.

$p$-rank:  $2$
Slopes:  $[0, 0, 1, 1]$

Point counts

Point counts of the abelian variety

$r$ $1$ $2$ $3$ $4$ $5$
$A(\F_{q^r})$ $30096$ $1489752000$ $58441245375744$ $2268505705356000000$ $88036654027586402728656$

Point counts of the curve

$r$ $1$ $2$ $3$ $4$ $5$ $6$ $7$ $8$ $9$ $10$
$C(\F_{q^r})$ $149$ $38385$ $7644002$ $1506173393$ $296710146049$ $58451739466230$ $11514990558930637$ $2268453123943144513$ $446885265410734782074$ $88036397287347313708425$

Jacobians and polarizations

This isogeny class is principally polarizable and contains the Jacobians of 60 curves (of which all are hyperelliptic):

Decomposition and endomorphism algebra

All geometric endomorphisms are defined over $\F_{197}$.

Endomorphism algebra over $\F_{197}$
The isogeny class factors as 1.197.abb $\times$ 1.197.aw and its endomorphism algebra is a direct product of the endomorphism algebras for each isotypic factor. The endomorphism algebra for each factor is:

Base change

This is a primitive isogeny class.

Twists

Below is a list of all twists of this isogeny class.

TwistExtension degreeCommon base change
2.197.af_ahs$2$(not in LMFDB)
2.197.f_ahs$2$(not in LMFDB)
2.197.bx_bma$2$(not in LMFDB)