Invariants
| Base field: | $\F_{197}$ |
| Dimension: | $2$ |
| L-polynomial: | $( 1 - 27 x + 197 x^{2} )( 1 - 22 x + 197 x^{2} )$ |
| $1 - 49 x + 988 x^{2} - 9653 x^{3} + 38809 x^{4}$ | |
| Frobenius angles: | $\pm0.0882242067266$, $\pm0.213320986704$ |
| Angle rank: | $2$ (numerical) |
| Jacobians: | $60$ |
This isogeny class is not simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
| $p$-rank: | $2$ |
| Slopes: | $[0, 0, 1, 1]$ |
Point counts
Point counts of the abelian variety
| $r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
|---|---|---|---|---|---|
| $A(\F_{q^r})$ | $30096$ | $1489752000$ | $58441245375744$ | $2268505705356000000$ | $88036654027586402728656$ |
| $r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
|---|---|---|---|---|---|---|---|---|---|---|
| $C(\F_{q^r})$ | $149$ | $38385$ | $7644002$ | $1506173393$ | $296710146049$ | $58451739466230$ | $11514990558930637$ | $2268453123943144513$ | $446885265410734782074$ | $88036397287347313708425$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 60 curves (of which all are hyperelliptic):
- $y^2=15 x^6+44 x^5+143 x^4+34 x^3+167 x^2+46 x+170$
- $y^2=81 x^6+48 x^5+12 x^4+137 x^3+38 x^2+16 x+139$
- $y^2=183 x^6+74 x^5+79 x^4+37 x^3+59 x^2+187 x+20$
- $y^2=159 x^6+174 x^5+59 x^4+86 x^3+183 x^2+127 x+54$
- $y^2=128 x^6+142 x^5+88 x^4+107 x^3+50 x^2+127 x+113$
- $y^2=76 x^6+42 x^5+51 x^4+114 x^3+188 x^2+32 x+165$
- $y^2=164 x^6+156 x^5+162 x^4+192 x^3+85 x^2+53 x+84$
- $y^2=87 x^6+31 x^5+164 x^4+61 x^3+62 x^2+98 x+108$
- $y^2=95 x^6+5 x^5+29 x^4+145 x^3+29 x^2+142 x+140$
- $y^2=71 x^6+69 x^5+27 x^4+141 x^3+185 x^2+59 x+82$
- $y^2=78 x^6+6 x^5+88 x^4+127 x^3+153 x^2+107 x+82$
- $y^2=16 x^6+64 x^5+2 x^4+49 x^3+147 x^2+114 x+38$
- $y^2=156 x^6+116 x^5+190 x^4+60 x^3+120 x^2+165 x+106$
- $y^2=146 x^6+40 x^5+58 x^4+43 x^3+28 x^2+187 x+113$
- $y^2=26 x^6+111 x^5+142 x^4+25 x^3+103 x^2+78 x+188$
- $y^2=16 x^6+69 x^5+8 x^4+121 x^3+39 x^2+79 x+48$
- $y^2=83 x^6+128 x^5+143 x^4+2 x^3+54 x^2+16 x+21$
- $y^2=32 x^6+183 x^5+73 x^4+73 x^3+44 x^2+117 x+75$
- $y^2=104 x^6+91 x^5+51 x^4+34 x^3+104 x^2+79 x+120$
- $y^2=74 x^6+127 x^5+96 x^4+6 x^3+169 x^2+176 x+171$
- and 40 more
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{197}$.
Endomorphism algebra over $\F_{197}$| The isogeny class factors as 1.197.abb $\times$ 1.197.aw and its endomorphism algebra is a direct product of the endomorphism algebras for each isotypic factor. The endomorphism algebra for each factor is: |
Base change
This is a primitive isogeny class.
Twists
Below is a list of all twists of this isogeny class.
| Twist | Extension degree | Common base change |
|---|---|---|
| 2.197.af_ahs | $2$ | (not in LMFDB) |
| 2.197.f_ahs | $2$ | (not in LMFDB) |
| 2.197.bx_bma | $2$ | (not in LMFDB) |