Properties

Label 2.197.abw_bkt
Base field $\F_{197}$
Dimension $2$
$p$-rank $2$
Ordinary yes
Supersingular no
Simple yes
Geometrically simple yes
Primitive yes
Principally polarizable yes
Contains a Jacobian yes

Related objects

Downloads

Learn more

Invariants

Base field:  $\F_{197}$
Dimension:  $2$
L-polynomial:  $1 - 48 x + 955 x^{2} - 9456 x^{3} + 38809 x^{4}$
Frobenius angles:  $\pm0.0378626054803$, $\pm0.245516893279$
Angle rank:  $2$ (numerical)
Number field:  4.0.15296400.2
Galois group:  $D_{4}$
Jacobians:  $24$

This isogeny class is simple and geometrically simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.

Newton polygon

This isogeny class is ordinary.

$p$-rank:  $2$
Slopes:  $[0, 0, 1, 1]$

Point counts

Point counts of the abelian variety

$r$ $1$ $2$ $3$ $4$ $5$
$A(\F_{q^r})$ $30261$ $1490929209$ $58440714873156$ $2268465920779182201$ $88036373631149825973861$

Point counts of the curve

$r$ $1$ $2$ $3$ $4$ $5$ $6$ $7$ $8$ $9$ $10$
$C(\F_{q^r})$ $150$ $38416$ $7643934$ $1506146980$ $296709201030$ $58451718040702$ $11514990196396158$ $2268453119207520964$ $446885265364235686278$ $88036397287032117448336$

Jacobians and polarizations

This isogeny class is principally polarizable and contains the Jacobians of 24 curves (of which all are hyperelliptic):

Decomposition and endomorphism algebra

All geometric endomorphisms are defined over $\F_{197}$.

Endomorphism algebra over $\F_{197}$
The endomorphism algebra of this simple isogeny class is 4.0.15296400.2.

Base change

This is a primitive isogeny class.

Twists

Below is a list of all twists of this isogeny class.

TwistExtension degreeCommon base change
2.197.bw_bkt$2$(not in LMFDB)