Properties

Label 2.193.aby_bmx
Base field $\F_{193}$
Dimension $2$
$p$-rank $2$
Ordinary yes
Supersingular no
Simple no
Geometrically simple no
Primitive yes
Principally polarizable yes
Contains a Jacobian yes

Related objects

Downloads

Learn more

Invariants

Base field:  $\F_{193}$
Dimension:  $2$
L-polynomial:  $( 1 - 25 x + 193 x^{2} )^{2}$
  $1 - 50 x + 1011 x^{2} - 9650 x^{3} + 37249 x^{4}$
Frobenius angles:  $\pm0.143734387197$, $\pm0.143734387197$
Angle rank:  $1$ (numerical)
Jacobians:  $12$

This isogeny class is not simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.

Newton polygon

This isogeny class is ordinary.

$p$-rank:  $2$
Slopes:  $[0, 0, 1, 1]$

Point counts

Point counts of the abelian variety

$r$ $1$ $2$ $3$ $4$ $5$
$A(\F_{q^r})$ $28561$ $1369814121$ $51666021416464$ $1925171176753933641$ $71709256409245886243761$

Point counts of the curve

$r$ $1$ $2$ $3$ $4$ $5$ $6$ $7$ $8$ $9$ $10$
$C(\F_{q^r})$ $144$ $36772$ $7186758$ $1387522756$ $267786496944$ $51682566660478$ $9974730725425008$ $1925122957865007748$ $371548729959925111494$ $71708904873488421516772$

Jacobians and polarizations

This isogeny class is principally polarizable and contains the Jacobians of 12 curves (of which all are hyperelliptic):

Decomposition and endomorphism algebra

All geometric endomorphisms are defined over $\F_{193}$.

Endomorphism algebra over $\F_{193}$
The isogeny class factors as 1.193.az 2 and its endomorphism algebra is $\mathrm{M}_{2}($\(\Q(\sqrt{-3}) \)$)$

Base change

This is a primitive isogeny class.

Twists

Below are some of the twists of this isogeny class.

TwistExtension degreeCommon base change
2.193.a_ajf$2$(not in LMFDB)
2.193.by_bmx$2$(not in LMFDB)
2.193.ax_my$3$(not in LMFDB)
2.193.ac_ahh$3$(not in LMFDB)
2.193.e_pa$3$(not in LMFDB)
2.193.z_qq$3$(not in LMFDB)
2.193.bu_bjf$3$(not in LMFDB)

Below is a list of all twists of this isogeny class.

TwistExtension degreeCommon base change
2.193.a_ajf$2$(not in LMFDB)
2.193.by_bmx$2$(not in LMFDB)
2.193.ax_my$3$(not in LMFDB)
2.193.ac_ahh$3$(not in LMFDB)
2.193.e_pa$3$(not in LMFDB)
2.193.z_qq$3$(not in LMFDB)
2.193.bu_bjf$3$(not in LMFDB)
2.193.a_jf$4$(not in LMFDB)
2.193.abw_bkz$6$(not in LMFDB)
2.193.abu_bjf$6$(not in LMFDB)
2.193.abb_qu$6$(not in LMFDB)
2.193.az_qq$6$(not in LMFDB)
2.193.av_nc$6$(not in LMFDB)
2.193.ae_pa$6$(not in LMFDB)
2.193.a_afn$6$(not in LMFDB)
2.193.a_os$6$(not in LMFDB)
2.193.c_ahh$6$(not in LMFDB)
2.193.v_nc$6$(not in LMFDB)
2.193.x_my$6$(not in LMFDB)
2.193.bb_qu$6$(not in LMFDB)
2.193.bw_bkz$6$(not in LMFDB)
2.193.a_aos$12$(not in LMFDB)
2.193.a_fn$12$(not in LMFDB)