Invariants
| Base field: | $\F_{193}$ |
| Dimension: | $2$ |
| L-polynomial: | $( 1 - 25 x + 193 x^{2} )^{2}$ |
| $1 - 50 x + 1011 x^{2} - 9650 x^{3} + 37249 x^{4}$ | |
| Frobenius angles: | $\pm0.143734387197$, $\pm0.143734387197$ |
| Angle rank: | $1$ (numerical) |
| Jacobians: | $12$ |
This isogeny class is not simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
| $p$-rank: | $2$ |
| Slopes: | $[0, 0, 1, 1]$ |
Point counts
Point counts of the abelian variety
| $r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
|---|---|---|---|---|---|
| $A(\F_{q^r})$ | $28561$ | $1369814121$ | $51666021416464$ | $1925171176753933641$ | $71709256409245886243761$ |
| $r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
|---|---|---|---|---|---|---|---|---|---|---|
| $C(\F_{q^r})$ | $144$ | $36772$ | $7186758$ | $1387522756$ | $267786496944$ | $51682566660478$ | $9974730725425008$ | $1925122957865007748$ | $371548729959925111494$ | $71708904873488421516772$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 12 curves (of which all are hyperelliptic):
- $y^2=5 x^6+133 x^3+45$
- $y^2=20 x^6+119 x^5+92 x^4+19 x^3+190 x^2+10 x+106$
- $y^2=75 x^6+177 x^5+192 x^4+64 x^3+95 x^2+92 x+111$
- $y^2=127 x^6+42 x^5+95 x^4+168 x^3+x^2+26 x+73$
- $y^2=126 x^6+82 x^5+106 x^4+7 x^3+45 x^2+186 x+94$
- $y^2=10 x^6+56 x^5+39 x^4+30 x^3+40 x^2+107 x+91$
- $y^2=119 x^6+106 x^5+50 x^4+115 x^3+112 x^2+119 x+160$
- $y^2=53 x^6+144 x^5+138 x^4+156 x^3+108 x^2+x+37$
- $y^2=28 x^6+92 x^5+60 x^4+170 x^3+81 x^2+56 x+102$
- $y^2=89 x^6+91 x^5+93 x^4+125 x^3+24 x^2+88 x+87$
- $y^2=12 x^6+98 x^5+115 x^4+48 x^3+151 x^2+77 x+98$
- $y^2=155 x^6+117 x^5+83 x^4+69 x^3+166 x^2+82 x+82$
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{193}$.
Endomorphism algebra over $\F_{193}$| The isogeny class factors as 1.193.az 2 and its endomorphism algebra is $\mathrm{M}_{2}($\(\Q(\sqrt{-3}) \)$)$ |
Base change
This is a primitive isogeny class.