Invariants
| Base field: | $\F_{193}$ |
| Dimension: | $2$ |
| L-polynomial: | $( 1 - 25 x + 193 x^{2} )( 1 - 23 x + 193 x^{2} )$ |
| $1 - 48 x + 961 x^{2} - 9264 x^{3} + 37249 x^{4}$ | |
| Frobenius angles: | $\pm0.143734387197$, $\pm0.189598946136$ |
| Angle rank: | $1$ (numerical) |
| Jacobians: | $31$ |
This isogeny class is not simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
| $p$-rank: | $2$ |
| Slopes: | $[0, 0, 1, 1]$ |
Point counts
Point counts of the abelian variety
| $r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
|---|---|---|---|---|---|
| $A(\F_{q^r})$ | $28899$ | $1373367177$ | $51682553604864$ | $1925222059351192329$ | $71709354098056097496099$ |
| $r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
|---|---|---|---|---|---|---|---|---|---|---|
| $C(\F_{q^r})$ | $146$ | $36868$ | $7189058$ | $1387559428$ | $267786861746$ | $51682566660478$ | $9974730628906994$ | $1925122955245673476$ | $371548729913362368194$ | $71708904872876447192068$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 31 curves (of which all are hyperelliptic):
- $y^2=187 x^6+72 x^5+55 x^4+129 x^3+55 x^2+72 x+187$
- $y^2=179 x^6+131 x^5+41 x^4+73 x^3+41 x^2+131 x+179$
- $y^2=21 x^6+63 x^5+186 x^4+66 x^3+186 x^2+63 x+21$
- $y^2=183 x^6+79 x^5+131 x^4+40 x^3+131 x^2+79 x+183$
- $y^2=131 x^6+70 x^5+154 x^4+23 x^3+154 x^2+70 x+131$
- $y^2=168 x^6+119 x^5+26 x^4+101 x^3+26 x^2+119 x+168$
- $y^2=102 x^6+13 x^5+189 x^4+3 x^3+189 x^2+13 x+102$
- $y^2=5 x^6+168$
- $y^2=133 x^6+57 x^5+144 x^4+82 x^3+144 x^2+57 x+133$
- $y^2=87 x^6+88 x^5+179 x^4+12 x^3+179 x^2+88 x+87$
- $y^2=185 x^6+32 x^5+97 x^4+86 x^3+97 x^2+32 x+185$
- $y^2=57 x^6+55 x^5+191 x^4+31 x^3+191 x^2+55 x+57$
- $y^2=141 x^6+168 x^5+68 x^4+142 x^3+68 x^2+168 x+141$
- $y^2=9 x^6+69 x^5+24 x^4+51 x^3+24 x^2+69 x+9$
- $y^2=173 x^6+77 x^5+60 x^4+167 x^3+60 x^2+77 x+173$
- $y^2=21 x^6+142 x^5+47 x^4+154 x^3+47 x^2+142 x+21$
- $y^2=39 x^6+147 x^5+65 x^4+130 x^3+65 x^2+147 x+39$
- $y^2=132 x^6+31 x^5+35 x^4+154 x^3+35 x^2+31 x+132$
- $y^2=33 x^6+77 x^5+29 x^4+63 x^3+29 x^2+77 x+33$
- $y^2=77 x^6+47 x^5+152 x^4+77 x^3+152 x^2+47 x+77$
- and 11 more
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{193^{6}}$.
Endomorphism algebra over $\F_{193}$| The isogeny class factors as 1.193.az $\times$ 1.193.ax and its endomorphism algebra is a direct product of the endomorphism algebras for each isotypic factor. The endomorphism algebra for each factor is: |
| The base change of $A$ to $\F_{193^{6}}$ is 1.51682540549249.bcovba 2 and its endomorphism algebra is $\mathrm{M}_{2}($\(\Q(\sqrt{-3}) \)$)$ |
- Endomorphism algebra over $\F_{193^{2}}$
The base change of $A$ to $\F_{193^{2}}$ is 1.37249.ajf $\times$ 1.37249.afn. The endomorphism algebra for each factor is: - Endomorphism algebra over $\F_{193^{3}}$
The base change of $A$ to $\F_{193^{3}}$ is 1.7189057.absg $\times$ 1.7189057.bsg. The endomorphism algebra for each factor is:
Base change
This is a primitive isogeny class.