Properties

Label 2.193.abw_bkz
Base field $\F_{193}$
Dimension $2$
$p$-rank $2$
Ordinary yes
Supersingular no
Simple no
Geometrically simple no
Primitive yes
Principally polarizable yes
Contains a Jacobian yes

Related objects

Downloads

Learn more

Invariants

Base field:  $\F_{193}$
Dimension:  $2$
L-polynomial:  $( 1 - 25 x + 193 x^{2} )( 1 - 23 x + 193 x^{2} )$
  $1 - 48 x + 961 x^{2} - 9264 x^{3} + 37249 x^{4}$
Frobenius angles:  $\pm0.143734387197$, $\pm0.189598946136$
Angle rank:  $1$ (numerical)
Jacobians:  $31$

This isogeny class is not simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.

Newton polygon

This isogeny class is ordinary.

$p$-rank:  $2$
Slopes:  $[0, 0, 1, 1]$

Point counts

Point counts of the abelian variety

$r$ $1$ $2$ $3$ $4$ $5$
$A(\F_{q^r})$ $28899$ $1373367177$ $51682553604864$ $1925222059351192329$ $71709354098056097496099$

Point counts of the curve

$r$ $1$ $2$ $3$ $4$ $5$ $6$ $7$ $8$ $9$ $10$
$C(\F_{q^r})$ $146$ $36868$ $7189058$ $1387559428$ $267786861746$ $51682566660478$ $9974730628906994$ $1925122955245673476$ $371548729913362368194$ $71708904872876447192068$

Jacobians and polarizations

This isogeny class is principally polarizable and contains the Jacobians of 31 curves (of which all are hyperelliptic):

Decomposition and endomorphism algebra

All geometric endomorphisms are defined over $\F_{193^{6}}$.

Endomorphism algebra over $\F_{193}$
The isogeny class factors as 1.193.az $\times$ 1.193.ax and its endomorphism algebra is a direct product of the endomorphism algebras for each isotypic factor. The endomorphism algebra for each factor is:
Endomorphism algebra over $\overline{\F}_{193}$
The base change of $A$ to $\F_{193^{6}}$ is 1.51682540549249.bcovba 2 and its endomorphism algebra is $\mathrm{M}_{2}($\(\Q(\sqrt{-3}) \)$)$
Remainder of endomorphism lattice by field

Base change

This is a primitive isogeny class.

Twists

Below are some of the twists of this isogeny class.

TwistExtension degreeCommon base change
2.193.ac_ahh$2$(not in LMFDB)
2.193.c_ahh$2$(not in LMFDB)
2.193.bw_bkz$2$(not in LMFDB)
2.193.abb_qu$3$(not in LMFDB)
2.193.av_nc$3$(not in LMFDB)
2.193.a_ajf$3$(not in LMFDB)
2.193.a_afn$3$(not in LMFDB)
2.193.a_os$3$(not in LMFDB)
2.193.v_nc$3$(not in LMFDB)
2.193.bb_qu$3$(not in LMFDB)
2.193.bw_bkz$3$(not in LMFDB)

Below is a list of all twists of this isogeny class.

TwistExtension degreeCommon base change
2.193.ac_ahh$2$(not in LMFDB)
2.193.c_ahh$2$(not in LMFDB)
2.193.bw_bkz$2$(not in LMFDB)
2.193.abb_qu$3$(not in LMFDB)
2.193.av_nc$3$(not in LMFDB)
2.193.a_ajf$3$(not in LMFDB)
2.193.a_afn$3$(not in LMFDB)
2.193.a_os$3$(not in LMFDB)
2.193.v_nc$3$(not in LMFDB)
2.193.bb_qu$3$(not in LMFDB)
2.193.bw_bkz$3$(not in LMFDB)
2.193.aby_bmx$6$(not in LMFDB)
2.193.abu_bjf$6$(not in LMFDB)
2.193.az_qq$6$(not in LMFDB)
2.193.ax_my$6$(not in LMFDB)
2.193.ae_pa$6$(not in LMFDB)
2.193.e_pa$6$(not in LMFDB)
2.193.x_my$6$(not in LMFDB)
2.193.z_qq$6$(not in LMFDB)
2.193.bu_bjf$6$(not in LMFDB)
2.193.by_bmx$6$(not in LMFDB)
2.193.a_aos$12$(not in LMFDB)
2.193.a_fn$12$(not in LMFDB)
2.193.a_jf$12$(not in LMFDB)