Invariants
| Base field: | $\F_{193}$ |
| Dimension: | $2$ |
| L-polynomial: | $1 - 48 x + 952 x^{2} - 9264 x^{3} + 37249 x^{4}$ |
| Frobenius angles: | $\pm0.0675123601384$, $\pm0.230069799779$ |
| Angle rank: | $2$ (numerical) |
| Number field: | 4.0.2054400.4 |
| Galois group: | $D_{4}$ |
| Jacobians: | $60$ |
This isogeny class is simple and geometrically simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
| $p$-rank: | $2$ |
| Slopes: | $[0, 0, 1, 1]$ |
Point counts
Point counts of the abelian variety
| $r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
|---|---|---|---|---|---|
| $A(\F_{q^r})$ | $28890$ | $1372679460$ | $51673224895290$ | $1925154747813891600$ | $71709016301977158272250$ |
| $r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
|---|---|---|---|---|---|---|---|---|---|---|
| $C(\F_{q^r})$ | $146$ | $36850$ | $7187762$ | $1387510918$ | $267785600306$ | $51682541600050$ | $9974730240873362$ | $1925122950833556478$ | $371548729888542460946$ | $71708904873245099619250$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 60 curves (of which all are hyperelliptic):
- $y^2=165 x^6+131 x^5+171 x^4+106 x^3+115 x^2+169 x+30$
- $y^2=69 x^6+78 x^5+190 x^4+148 x^3+167 x^2+152 x$
- $y^2=70 x^6+61 x^5+11 x^4+125 x^3+50 x^2+109 x+141$
- $y^2=191 x^6+38 x^5+145 x^4+166 x^3+60 x^2+169 x+11$
- $y^2=154 x^6+43 x^5+35 x^4+5 x^3+131 x^2+87 x+144$
- $y^2=106 x^6+51 x^5+75 x^4+58 x^3+48 x^2+73 x+47$
- $y^2=153 x^6+178 x^5+80 x^4+56 x^3+67 x^2+177 x+152$
- $y^2=90 x^6+73 x^5+132 x^4+138 x^3+66 x^2+116 x+130$
- $y^2=158 x^6+126 x^5+63 x^4+60 x^3+139 x^2+161 x+145$
- $y^2=74 x^6+64 x^5+153 x^4+187 x^3+102 x^2+122 x+174$
- $y^2=52 x^6+106 x^5+137 x^4+160 x^3+161 x^2+39 x+110$
- $y^2=188 x^6+46 x^5+20 x^4+171 x^3+37 x^2+139 x+30$
- $y^2=47 x^6+170 x^5+143 x^4+33 x^3+133 x^2+31 x+44$
- $y^2=149 x^6+57 x^5+117 x^4+42 x^3+158 x^2+x+38$
- $y^2=147 x^6+59 x^5+25 x^4+80 x^3+178 x^2+53 x+76$
- $y^2=47 x^6+155 x^5+99 x^4+161 x^3+83 x^2+171 x+86$
- $y^2=7 x^6+127 x^5+126 x^4+53 x^3+159 x^2+21 x+26$
- $y^2=64 x^6+181 x^5+179 x^4+51 x^3+180 x^2+89 x+102$
- $y^2=37 x^6+56 x^5+89 x^4+74 x^3+121 x^2+117 x+105$
- $y^2=119 x^6+147 x^5+12 x^4+135 x^3+59 x^2+58 x+123$
- and 40 more
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{193}$.
Endomorphism algebra over $\F_{193}$| The endomorphism algebra of this simple isogeny class is 4.0.2054400.4. |
Base change
This is a primitive isogeny class.
Twists
Below is a list of all twists of this isogeny class.
| Twist | Extension degree | Common base change |
|---|---|---|
| 2.193.bw_bkq | $2$ | (not in LMFDB) |