Invariants
| Base field: | $\F_{191}$ |
| Dimension: | $2$ |
| L-polynomial: | $1 - 49 x + 977 x^{2} - 9359 x^{3} + 36481 x^{4}$ |
| Frobenius angles: | $\pm0.0791099210161$, $\pm0.202977754945$ |
| Angle rank: | $2$ (numerical) |
| Number field: | 4.0.5519997.1 |
| Galois group: | $D_{4}$ |
| Jacobians: | $14$ |
This isogeny class is simple and geometrically simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
| $p$-rank: | $2$ |
| Slopes: | $[0, 0, 1, 1]$ |
Point counts
Point counts of the abelian variety
| $r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
|---|---|---|---|---|---|
| $A(\F_{q^r})$ | $28051$ | $1314666217$ | $48536552030425$ | $1771224979839254125$ | $64615221609140484836656$ |
| $r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
|---|---|---|---|---|---|---|---|---|---|---|
| $C(\F_{q^r})$ | $143$ | $36035$ | $6965765$ | $1330884171$ | $254195584228$ | $48551235961367$ | $9273284297855203$ | $1771197285721877731$ | $338298681550827579605$ | $64615048177775117121230$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 14 curves (of which all are hyperelliptic):
- $y^2=154 x^6+122 x^5+170 x^4+123 x^3+24 x^2+40 x+144$
- $y^2=123 x^6+57 x^5+176 x^4+125 x^3+69 x^2+102 x+183$
- $y^2=141 x^6+65 x^5+23 x^4+17 x^3+139 x^2+53 x+188$
- $y^2=187 x^6+127 x^5+100 x^4+150 x^3+27 x^2+73 x+31$
- $y^2=79 x^6+58 x^5+148 x^4+10 x^3+163 x^2+57 x+118$
- $y^2=45 x^6+3 x^5+171 x^4+115 x^3+75 x^2+3 x+46$
- $y^2=148 x^6+184 x^5+128 x^4+3 x^3+144 x^2+130 x+44$
- $y^2=74 x^6+82 x^5+27 x^4+38 x^3+92 x^2+95 x+55$
- $y^2=134 x^6+9 x^5+32 x^4+84 x^3+136 x^2+41 x+135$
- $y^2=168 x^6+141 x^5+71 x^4+171 x^3+59 x^2+14 x+111$
- $y^2=23 x^6+84 x^5+4 x^4+50 x^3+154 x^2+23 x+152$
- $y^2=33 x^6+23 x^5+153 x^4+181 x^3+187 x^2+152 x+98$
- $y^2=2 x^6+57 x^5+13 x^4+171 x^3+122 x^2+56 x+75$
- $y^2=44 x^6+138 x^5+182 x^4+59 x^3+44 x^2+187 x+143$
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{191}$.
Endomorphism algebra over $\F_{191}$| The endomorphism algebra of this simple isogeny class is 4.0.5519997.1. |
Base change
This is a primitive isogeny class.
Twists
Below is a list of all twists of this isogeny class.
| Twist | Extension degree | Common base change |
|---|---|---|
| 2.191.bx_blp | $2$ | (not in LMFDB) |