Invariants
| Base field: | $\F_{191}$ |
| Dimension: | $2$ |
| L-polynomial: | $( 1 - 26 x + 191 x^{2} )( 1 - 22 x + 191 x^{2} )$ |
| $1 - 48 x + 954 x^{2} - 9168 x^{3} + 36481 x^{4}$ | |
| Frobenius angles: | $\pm0.110219473395$, $\pm0.206981219725$ |
| Angle rank: | $2$ (numerical) |
| Jacobians: | $32$ |
This isogeny class is not simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
| $p$-rank: | $2$ |
| Slopes: | $[0, 0, 1, 1]$ |
Point counts
Point counts of the abelian variety
| $r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
|---|---|---|---|---|---|
| $A(\F_{q^r})$ | $28220$ | $1316519440$ | $48546218097020$ | $1771262611568296960$ | $64615343927199401685500$ |
| $r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
|---|---|---|---|---|---|---|---|---|---|---|
| $C(\F_{q^r})$ | $144$ | $36086$ | $6967152$ | $1330912446$ | $254196065424$ | $48551243138678$ | $9273284393960304$ | $1771197286880617726$ | $338298681562924658832$ | $64615048177864704875126$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 32 curves (of which all are hyperelliptic):
- $y^2=131 x^6+86 x^5+87 x^4+92 x^3+187 x^2+177 x+176$
- $y^2=38 x^6+27 x^5+189 x^4+55 x^3+165 x^2+135 x+85$
- $y^2=190 x^6+41 x^5+7 x^4+81 x^3+113 x^2+36 x+92$
- $y^2=93 x^6+101 x^5+36 x^4+122 x^3+60 x^2+157 x+140$
- $y^2=35 x^6+127 x^5+78 x^4+113 x^3+15 x^2+105 x+91$
- $y^2=92 x^6+66 x^5+106 x^4+154 x^3+106 x^2+66 x+92$
- $y^2=24 x^6+112 x^5+187 x^4+167 x^3+21 x^2+6 x+170$
- $y^2=176 x^6+151 x^5+164 x^4+79 x^3+164 x^2+151 x+176$
- $y^2=124 x^6+45 x^5+48 x^4+57 x^3+104 x^2+48 x+50$
- $y^2=116 x^6+171 x^5+39 x^4+40 x^3+172 x^2+131 x+139$
- $y^2=155 x^6+124 x^5+77 x^4+150 x^3+136 x^2+188 x+105$
- $y^2=188 x^6+181 x^5+178 x^4+86 x^3+x^2+179 x+50$
- $y^2=149 x^6+112 x^5+190 x^4+27 x^3+190 x^2+112 x+149$
- $y^2=4 x^6+172 x^5+98 x^4+83 x^3+136 x^2+163 x+1$
- $y^2=49 x^6+132 x^5+11 x^4+149 x^3+14 x^2+64 x+117$
- $y^2=93 x^6+102 x^5+59 x^4+58 x^3+163 x^2+185 x+36$
- $y^2=162 x^6+51 x^5+155 x^4+17 x^3+45 x^2+164 x+145$
- $y^2=7 x^6+116 x^5+58 x^4+155 x^3+142 x^2+33 x+124$
- $y^2=171 x^6+168 x^5+86 x^4+69 x^3+86 x^2+168 x+171$
- $y^2=45 x^6+6 x^5+169 x^4+54 x^3+126 x^2+132 x+142$
- and 12 more
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{191}$.
Endomorphism algebra over $\F_{191}$| The isogeny class factors as 1.191.aba $\times$ 1.191.aw and its endomorphism algebra is a direct product of the endomorphism algebras for each isotypic factor. The endomorphism algebra for each factor is: |
Base change
This is a primitive isogeny class.
Twists
Below is a list of all twists of this isogeny class.
| Twist | Extension degree | Common base change |
|---|---|---|
| 2.191.ae_ahi | $2$ | (not in LMFDB) |
| 2.191.e_ahi | $2$ | (not in LMFDB) |
| 2.191.bw_bks | $2$ | (not in LMFDB) |