Invariants
| Base field: | $\F_{19}$ |
| Dimension: | $2$ |
| L-polynomial: | $( 1 + 4 x + 19 x^{2} )( 1 + 8 x + 19 x^{2} )$ |
| $1 + 12 x + 70 x^{2} + 228 x^{3} + 361 x^{4}$ | |
| Frobenius angles: | $\pm0.651731832911$, $\pm0.869926530853$ |
| Angle rank: | $2$ (numerical) |
| Jacobians: | $12$ |
| Cyclic group of points: | no |
| Non-cyclic primes: | $2$ |
This isogeny class is not simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
| $p$-rank: | $2$ |
| Slopes: | $[0, 0, 1, 1]$ |
Point counts
Point counts of the abelian variety
| $r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
|---|---|---|---|---|---|
| $A(\F_{q^r})$ | $672$ | $129024$ | $46309536$ | $17020846080$ | $6132880616352$ |
| $r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
|---|---|---|---|---|---|---|---|---|---|---|
| $C(\F_{q^r})$ | $32$ | $358$ | $6752$ | $130606$ | $2476832$ | $47043286$ | $893825888$ | $16984025566$ | $322685684768$ | $6131069428678$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 12 curves (of which all are hyperelliptic):
- $y^2=6 x^6+15 x^5+14 x^4+17 x^3+14 x^2+15 x+6$
- $y^2=11 x^6+4 x^5+11 x^4+13 x^3+4 x^2+3 x+10$
- $y^2=3 x^6+6 x^5+2 x^4+17 x^3+15 x^2+12$
- $y^2=2 x^6+8 x^5+x^4+5 x^3+x^2+8 x+2$
- $y^2=18 x^6+17 x^5+13 x^4+16 x^3+14 x^2+4 x+3$
- $y^2=18 x^6+8 x^5+15 x^4+18 x^3+18 x^2+18 x+4$
- $y^2=5 x^6+5 x^5+17 x^4+3 x^3+5 x^2+17 x+5$
- $y^2=15 x^5+11 x^4+12 x^3+11 x^2+15 x$
- $y^2=17 x^6+x^5+13 x^4+18 x^3+13 x^2+x+17$
- $y^2=13 x^6+16 x^5+15 x^4+14 x^3+10 x^2+5 x+13$
- $y^2=4 x^6+15 x^5+8 x^4+15 x^3+2 x^2+14 x+6$
- $y^2=4 x^6+2 x^5+12 x^4+4 x^3+3 x^2+12 x+6$
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{19}$.
Endomorphism algebra over $\F_{19}$| The isogeny class factors as 1.19.e $\times$ 1.19.i and its endomorphism algebra is a direct product of the endomorphism algebras for each isotypic factor. The endomorphism algebra for each factor is: |
Base change
This is a primitive isogeny class.