Properties

Label 2.19.d_bc
Base field $\F_{19}$
Dimension $2$
$p$-rank $2$
Ordinary yes
Supersingular no
Simple no
Geometrically simple no
Primitive yes
Principally polarizable yes
Contains a Jacobian yes

Related objects

Downloads

Learn more

Invariants

Base field:  $\F_{19}$
Dimension:  $2$
L-polynomial:  $( 1 - 2 x + 19 x^{2} )( 1 + 5 x + 19 x^{2} )$
  $1 + 3 x + 28 x^{2} + 57 x^{3} + 361 x^{4}$
Frobenius angles:  $\pm0.426318466621$, $\pm0.694430027533$
Angle rank:  $2$ (numerical)
Jacobians:  $24$
Isomorphism classes:  150
Cyclic group of points:    no
Non-cyclic primes:   $3$

This isogeny class is not simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.

Newton polygon

This isogeny class is ordinary.

$p$-rank:  $2$
Slopes:  $[0, 0, 1, 1]$

Point counts

Point counts of the abelian variety

$r$ $1$ $2$ $3$ $4$ $5$
$A(\F_{q^r})$ $450$ $148500$ $46672200$ $16999092000$ $6124615224750$

Point counts of the curve

$r$ $1$ $2$ $3$ $4$ $5$ $6$ $7$ $8$ $9$ $10$
$C(\F_{q^r})$ $23$ $409$ $6806$ $130441$ $2473493$ $47036482$ $893985647$ $16983590161$ $322685903954$ $6131067780649$

Jacobians and polarizations

This isogeny class is principally polarizable and contains the Jacobians of 24 curves (of which all are hyperelliptic):

Decomposition and endomorphism algebra

All geometric endomorphisms are defined over $\F_{19}$.

Endomorphism algebra over $\F_{19}$
The isogeny class factors as 1.19.ac $\times$ 1.19.f and its endomorphism algebra is a direct product of the endomorphism algebras for each isotypic factor. The endomorphism algebra for each factor is:

Base change

This is a primitive isogeny class.

Twists

Below is a list of all twists of this isogeny class.

TwistExtension degreeCommon base change
2.19.ah_bw$2$(not in LMFDB)
2.19.ad_bc$2$(not in LMFDB)
2.19.h_bw$2$(not in LMFDB)