Invariants
| Base field: | $\F_{19}$ |
| Dimension: | $2$ |
| L-polynomial: | $( 1 - 2 x + 19 x^{2} )( 1 + 5 x + 19 x^{2} )$ |
| $1 + 3 x + 28 x^{2} + 57 x^{3} + 361 x^{4}$ | |
| Frobenius angles: | $\pm0.426318466621$, $\pm0.694430027533$ |
| Angle rank: | $2$ (numerical) |
| Jacobians: | $24$ |
| Isomorphism classes: | 150 |
| Cyclic group of points: | no |
| Non-cyclic primes: | $3$ |
This isogeny class is not simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
| $p$-rank: | $2$ |
| Slopes: | $[0, 0, 1, 1]$ |
Point counts
Point counts of the abelian variety
| $r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
|---|---|---|---|---|---|
| $A(\F_{q^r})$ | $450$ | $148500$ | $46672200$ | $16999092000$ | $6124615224750$ |
| $r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
|---|---|---|---|---|---|---|---|---|---|---|
| $C(\F_{q^r})$ | $23$ | $409$ | $6806$ | $130441$ | $2473493$ | $47036482$ | $893985647$ | $16983590161$ | $322685903954$ | $6131067780649$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 24 curves (of which all are hyperelliptic):
- $y^2=9 x^6+10 x^5+2 x^4+12 x^3+x^2+18 x+4$
- $y^2=15 x^6+11 x^5+x^4+12 x^3+11 x^2+3 x+8$
- $y^2=11 x^6+18 x^5+5 x^4+x^3+10 x^2+9 x+6$
- $y^2=11 x^6+17 x^5+7 x^4+4 x^3+9 x^2+18 x+10$
- $y^2=11 x^6+x^5+5 x^4+17 x^3+4 x^2+8 x+10$
- $y^2=14 x^6+16 x^5+11 x^4+6 x^3+2 x^2+9 x+16$
- $y^2=14 x^6+x^5+3 x^4+17 x^3+14 x^2+18 x+2$
- $y^2=8 x^6+17 x^3+7 x^2+15 x+3$
- $y^2=11 x^6+12 x^5+5 x^4+7 x^3+9 x^2+17 x$
- $y^2=12 x^6+10 x^5+7 x^4+8 x^3+17 x^2+11 x+15$
- $y^2=6 x^5+11 x^4+5 x^3+15 x^2+2 x+12$
- $y^2=17 x^6+11 x^5+5 x^4+15 x^3+14 x^2+12 x+9$
- $y^2=14 x^6+10 x^5+4 x^4+2 x^3+11 x^2+15 x+18$
- $y^2=11 x^6+4 x^5+7 x^4+11 x^3+10 x^2+2 x$
- $y^2=10 x^6+2 x^4+5 x^3+4 x+3$
- $y^2=11 x^6+11 x^5+x^4+10 x^3+10 x^2+16 x+1$
- $y^2=6 x^6+17 x^5+13 x^4+2 x^3+18 x^2+8 x+15$
- $y^2=7 x^6+11 x^5+x^4+6 x^3+8 x^2+15 x+14$
- $y^2=9 x^6+9 x^5+x^4+18 x^2+10 x+1$
- $y^2=4 x^6+17 x^5+7 x^4+15 x^3+6 x^2+5 x+17$
- $y^2=4 x^6+x^5+11 x^4+15 x^3+15 x^2+9 x+9$
- $y^2=13 x^6+17 x^5+14 x^4+11 x^3+14 x^2+16 x+12$
- $y^2=11 x^6+18 x^5+5 x^4+15 x^3+10 x^2+4 x+7$
- $y^2=7 x^6+14 x^5+10 x^4+14 x^3+6 x^2+12 x+7$
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{19}$.
Endomorphism algebra over $\F_{19}$| The isogeny class factors as 1.19.ac $\times$ 1.19.f and its endomorphism algebra is a direct product of the endomorphism algebras for each isotypic factor. The endomorphism algebra for each factor is: |
Base change
This is a primitive isogeny class.
Twists
Below is a list of all twists of this isogeny class.
| Twist | Extension degree | Common base change |
|---|---|---|
| 2.19.ah_bw | $2$ | (not in LMFDB) |
| 2.19.ad_bc | $2$ | (not in LMFDB) |
| 2.19.h_bw | $2$ | (not in LMFDB) |