Invariants
| Base field: | $\F_{19}$ |
| Dimension: | $2$ |
| L-polynomial: | $1 - 2 x + 20 x^{2} - 38 x^{3} + 361 x^{4}$ |
| Frobenius angles: | $\pm0.289273908625$, $\pm0.625899319086$ |
| Angle rank: | $2$ (numerical) |
| Number field: | 4.0.1963840.6 |
| Galois group: | $D_{4}$ |
| Jacobians: | $20$ |
This isogeny class is simple and geometrically simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
| $p$-rank: | $2$ |
| Slopes: | $[0, 0, 1, 1]$ |
Point counts
Point counts of the abelian variety
| $r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
|---|---|---|---|---|---|
| $A(\F_{q^r})$ | $342$ | $144324$ | $47022606$ | $17067756240$ | $6139536045102$ |
| $r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
|---|---|---|---|---|---|---|---|---|---|---|
| $C(\F_{q^r})$ | $18$ | $398$ | $6858$ | $130966$ | $2479518$ | $47026766$ | $893790342$ | $16983679966$ | $322687599282$ | $6131067530078$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 20 curves (of which all are hyperelliptic):
- $y^2=2 x^6+17 x^5+12 x^4+9 x^3+13 x^2+6 x+8$
- $y^2=5 x^6+7 x^5+4 x^4+16 x^3+7 x^2+9 x+3$
- $y^2=12 x^6+8 x^5+17 x^4+10 x^3+10 x^2+11 x+18$
- $y^2=2 x^6+6 x^5+18 x^4+5 x^3+3 x^2+4 x+16$
- $y^2=15 x^6+x^5+17 x^4+5 x^3+6 x^2+18 x+5$
- $y^2=8 x^5+2 x^4+12 x^3+9 x+4$
- $y^2=x^6+12 x^5+11 x^4+7 x^3+15 x^2+11 x+6$
- $y^2=4 x^6+16 x^5+7 x^4+5 x^3+2 x^2+5 x+15$
- $y^2=4 x^6+9 x^5+4 x^3+17 x^2+7 x+13$
- $y^2=15 x^6+8 x^4+17 x^3+4 x^2+18 x+5$
- $y^2=9 x^6+13 x^5+3 x^4+6 x^2+8 x+10$
- $y^2=9 x^6+3 x^5+17 x^4+3 x^2+2 x+17$
- $y^2=14 x^6+8 x^5+18 x^4+2 x^3+2 x^2+18 x+6$
- $y^2=7 x^6+11 x^5+11 x^4+12 x^3+18 x^2+8 x+18$
- $y^2=18 x^6+2 x^5+x^4+6 x^3+4 x^2+11 x+1$
- $y^2=8 x^6+3 x^5+17 x^4+2 x^2+10 x+17$
- $y^2=16 x^6+14 x^5+13 x^4+7 x^3+3 x^2+5 x+14$
- $y^2=9 x^6+5 x^5+6 x^3+8 x^2+14 x+2$
- $y^2=7 x^6+16 x^5+9 x^4+14 x^3+12 x^2+10 x+11$
- $y^2=2 x^6+4 x^5+2 x^4+11 x^3+7 x+3$
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{19}$.
Endomorphism algebra over $\F_{19}$| The endomorphism algebra of this simple isogeny class is 4.0.1963840.6. |
Base change
This is a primitive isogeny class.
Twists
Below is a list of all twists of this isogeny class.
| Twist | Extension degree | Common base change |
|---|---|---|
| 2.19.c_u | $2$ | (not in LMFDB) |