Invariants
| Base field: | $\F_{19}$ |
| Dimension: | $2$ |
| L-polynomial: | $1 - 2 x + 2 x^{2} - 38 x^{3} + 361 x^{4}$ |
| Frobenius angles: | $\pm0.198134116489$, $\pm0.698134116489$ |
| Angle rank: | $1$ (numerical) |
| Number field: | \(\Q(i, \sqrt{37})\) |
| Galois group: | $C_2^2$ |
| Jacobians: | $26$ |
| Isomorphism classes: | 87 |
| Cyclic group of points: | no |
| Non-cyclic primes: | $2, 3$ |
This isogeny class is simple but not geometrically simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
| $p$-rank: | $2$ |
| Slopes: | $[0, 0, 1, 1]$ |
Point counts
Point counts of the abelian variety
| $r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
|---|---|---|---|---|---|
| $A(\F_{q^r})$ | $324$ | $130896$ | $46297332$ | $17133762816$ | $6139089111924$ |
| $r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
|---|---|---|---|---|---|---|---|---|---|---|
| $C(\F_{q^r})$ | $18$ | $362$ | $6750$ | $131470$ | $2479338$ | $47045882$ | $893948598$ | $16983425374$ | $322686099810$ | $6131066257802$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 26 curves (of which all are hyperelliptic):
- $y^2=6 x^6+2 x^5+x^4+x^3+8 x^2+16 x+18$
- $y^2=12 x^6+3 x^5+9 x^4+9 x^3+17 x^2+10 x+10$
- $y^2=11 x^6+9 x^4+8 x^3+x^2+x+12$
- $y^2=13 x^6+17 x^5+7 x^4+11 x^3+3 x^2+8 x+5$
- $y^2=14 x^6+5 x^5+13 x^4+18 x^3+2 x^2+18 x+12$
- $y^2=x^6+12 x^5+4 x^4+15 x^3+6 x^2+10 x+11$
- $y^2=15 x^6+17 x^5+4 x^4+5 x^3+11 x^2+14 x$
- $y^2=14 x^6+9 x^5+15 x^4+5 x^3+4$
- $y^2=12 x^6+6 x^5+3 x^4+16 x^3+14 x^2+16 x+18$
- $y^2=5 x^6+x^5+10 x^4+16 x^3+7 x^2+10 x+2$
- $y^2=12 x^6+17 x^5+x^4+7 x^3+x^2+14 x+3$
- $y^2=8 x^6+10 x^5+12 x^4+6 x^3+4 x^2+2 x+12$
- $y^2=11 x^6+2 x^5+9 x^4+13 x^3+10 x^2+4$
- $y^2=2 x^6+16 x^5+12 x^4+9 x^3+16 x^2+17 x+17$
- $y^2=8 x^6+13 x^5+9 x^4+11 x^3+17 x^2+10$
- $y^2=8 x^6+8 x^5+8 x^3+15 x^2+18 x+2$
- $y^2=17 x^6+17 x^5+14 x^4+15 x^2+x+6$
- $y^2=15 x^6+9 x^5+7 x^4+7 x^3+6 x^2+13 x+11$
- $y^2=16 x^6+6 x^5+8 x^4+4 x^3+5 x^2+16 x+13$
- $y^2=14 x^6+4 x^5+18 x^4+14 x^3+12 x^2+9 x+16$
- $y^2=16 x^6+15 x^5+7 x^4+2 x^3+13 x^2+13 x+7$
- $y^2=x^6+4 x^5+9 x^4+8 x^3+12 x^2+5 x+5$
- $y^2=11 x^6+9 x^5+15 x^4+17 x^3+4 x^2+4 x+12$
- $y^2=2 x^6+6 x^5+4 x^3+15 x^2+8 x+11$
- $y^2=13 x^6+18 x^5+8 x^4+8 x^2+x+13$
- $y^2=9 x^6+14 x^5+16 x^3+8 x^2+7 x+3$
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{19^{4}}$.
Endomorphism algebra over $\F_{19}$| The endomorphism algebra of this simple isogeny class is \(\Q(i, \sqrt{37})\). |
| The base change of $A$ to $\F_{19^{4}}$ is 1.130321.wc 2 and its endomorphism algebra is $\mathrm{M}_{2}($\(\Q(\sqrt{-37}) \)$)$ |
- Endomorphism algebra over $\F_{19^{2}}$
The base change of $A$ to $\F_{19^{2}}$ is the simple isogeny class 2.361.a_wc and its endomorphism algebra is \(\Q(i, \sqrt{37})\).
Base change
This is a primitive isogeny class.
Twists
Below is a list of all twists of this isogeny class.
| Twist | Extension degree | Common base change |
|---|---|---|
| 2.19.c_c | $2$ | (not in LMFDB) |
| 2.19.a_abk | $8$ | (not in LMFDB) |
| 2.19.a_bk | $8$ | (not in LMFDB) |