Properties

Label 2.19.ac_c
Base field $\F_{19}$
Dimension $2$
$p$-rank $2$
Ordinary yes
Supersingular no
Simple yes
Geometrically simple no
Primitive yes
Principally polarizable yes
Contains a Jacobian yes

Related objects

Downloads

Learn more

Invariants

Base field:  $\F_{19}$
Dimension:  $2$
L-polynomial:  $1 - 2 x + 2 x^{2} - 38 x^{3} + 361 x^{4}$
Frobenius angles:  $\pm0.198134116489$, $\pm0.698134116489$
Angle rank:  $1$ (numerical)
Number field:  \(\Q(i, \sqrt{37})\)
Galois group:  $C_2^2$
Jacobians:  $26$
Isomorphism classes:  87
Cyclic group of points:    no
Non-cyclic primes:   $2, 3$

This isogeny class is simple but not geometrically simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.

Newton polygon

This isogeny class is ordinary.

$p$-rank:  $2$
Slopes:  $[0, 0, 1, 1]$

Point counts

Point counts of the abelian variety

$r$ $1$ $2$ $3$ $4$ $5$
$A(\F_{q^r})$ $324$ $130896$ $46297332$ $17133762816$ $6139089111924$

Point counts of the curve

$r$ $1$ $2$ $3$ $4$ $5$ $6$ $7$ $8$ $9$ $10$
$C(\F_{q^r})$ $18$ $362$ $6750$ $131470$ $2479338$ $47045882$ $893948598$ $16983425374$ $322686099810$ $6131066257802$

Jacobians and polarizations

This isogeny class is principally polarizable and contains the Jacobians of 26 curves (of which all are hyperelliptic):

Decomposition and endomorphism algebra

All geometric endomorphisms are defined over $\F_{19^{4}}$.

Endomorphism algebra over $\F_{19}$
The endomorphism algebra of this simple isogeny class is \(\Q(i, \sqrt{37})\).
Endomorphism algebra over $\overline{\F}_{19}$
The base change of $A$ to $\F_{19^{4}}$ is 1.130321.wc 2 and its endomorphism algebra is $\mathrm{M}_{2}($\(\Q(\sqrt{-37}) \)$)$
Remainder of endomorphism lattice by field

Base change

This is a primitive isogeny class.

Twists

Below is a list of all twists of this isogeny class.

TwistExtension degreeCommon base change
2.19.c_c$2$(not in LMFDB)
2.19.a_abk$8$(not in LMFDB)
2.19.a_bk$8$(not in LMFDB)