Properties

Label 2.19.ac_be
Base field $\F_{19}$
Dimension $2$
$p$-rank $2$
Ordinary yes
Supersingular no
Simple no
Geometrically simple no
Primitive yes
Principally polarizable yes
Contains a Jacobian yes

Related objects

Downloads

Learn more

Invariants

Base field:  $\F_{19}$
Dimension:  $2$
L-polynomial:  $( 1 - 4 x + 19 x^{2} )( 1 + 2 x + 19 x^{2} )$
  $1 - 2 x + 30 x^{2} - 38 x^{3} + 361 x^{4}$
Frobenius angles:  $\pm0.348268167089$, $\pm0.573681533379$
Angle rank:  $2$ (numerical)
Jacobians:  $36$

This isogeny class is not simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.

Newton polygon

This isogeny class is ordinary.

$p$-rank:  $2$
Slopes:  $[0, 0, 1, 1]$

Point counts

Point counts of the abelian variety

$r$ $1$ $2$ $3$ $4$ $5$
$A(\F_{q^r})$ $352$ $152064$ $47440096$ $16958177280$ $6132842813152$

Point counts of the curve

$r$ $1$ $2$ $3$ $4$ $5$ $6$ $7$ $8$ $9$ $10$
$C(\F_{q^r})$ $18$ $418$ $6918$ $130126$ $2476818$ $47035186$ $893800422$ $16983839326$ $322689724242$ $6131063173378$

Jacobians and polarizations

This isogeny class is principally polarizable and contains the Jacobians of 36 curves (of which all are hyperelliptic):

Decomposition and endomorphism algebra

All geometric endomorphisms are defined over $\F_{19}$.

Endomorphism algebra over $\F_{19}$
The isogeny class factors as 1.19.ae $\times$ 1.19.c and its endomorphism algebra is a direct product of the endomorphism algebras for each isotypic factor. The endomorphism algebra for each factor is:

Base change

This is a primitive isogeny class.

Twists

Below is a list of all twists of this isogeny class.

TwistExtension degreeCommon base change
2.19.ag_bu$2$(not in LMFDB)
2.19.c_be$2$(not in LMFDB)
2.19.g_bu$2$(not in LMFDB)