Invariants
Base field: | $\F_{19}$ |
Dimension: | $2$ |
L-polynomial: | $( 1 - 4 x + 19 x^{2} )( 1 + 2 x + 19 x^{2} )$ |
$1 - 2 x + 30 x^{2} - 38 x^{3} + 361 x^{4}$ | |
Frobenius angles: | $\pm0.348268167089$, $\pm0.573681533379$ |
Angle rank: | $2$ (numerical) |
Jacobians: | $36$ |
This isogeny class is not simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
$p$-rank: | $2$ |
Slopes: | $[0, 0, 1, 1]$ |
Point counts
Point counts of the abelian variety
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
---|---|---|---|---|---|
$A(\F_{q^r})$ | $352$ | $152064$ | $47440096$ | $16958177280$ | $6132842813152$ |
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
---|---|---|---|---|---|---|---|---|---|---|
$C(\F_{q^r})$ | $18$ | $418$ | $6918$ | $130126$ | $2476818$ | $47035186$ | $893800422$ | $16983839326$ | $322689724242$ | $6131063173378$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 36 curves (of which all are hyperelliptic):
- $y^2=10 x^6+8 x^5+2 x^4+14 x^3+8 x^2+10 x+14$
- $y^2=17 x^6+5 x^5+11 x^4+13 x^3+7 x$
- $y^2=15 x^6+6 x^5+8 x^4+2 x^3+4 x^2+11 x+11$
- $y^2=12 x^5+9 x^4+16 x^3+12 x^2+13 x+3$
- $y^2=3 x^6+15 x^5+4 x^4+10 x^3+5 x^2+8 x+2$
- $y^2=11 x^6+3 x^5+3 x^4+8 x^3+3 x^2+3 x+11$
- $y^2=11 x^6+14 x^5+15 x^3+x^2+9 x+7$
- $y^2=6 x^6+5 x^5+4 x^4+x^3+4 x^2+5 x+6$
- $y^2=2 x^6+13 x^5+13 x^4+14 x^3+14 x^2+18 x+4$
- $y^2=5 x^6+9 x^4+14 x^3+3 x^2+16 x+3$
- $y^2=18 x^5+7 x^4+12 x^3+x^2+12 x$
- $y^2=x^6+18 x^5+18 x^4+x^3+3 x^2+2 x+18$
- $y^2=13 x^6+x^5+18 x^4+12 x^3+10 x^2+5 x+15$
- $y^2=5 x^6+14 x^4+15 x^3+3 x^2+17 x+5$
- $y^2=15 x^6+10 x^5+4 x^4+x^3+2 x^2+8 x+14$
- $y^2=8 x^6+4 x^5+5 x^4+x^3+4 x^2+9 x+2$
- $y^2=7 x^6+18 x^4+14 x^3+12 x^2+15 x+6$
- $y^2=10 x^6+5 x^5+13 x^3+16 x^2+7 x+8$
- $y^2=9 x^6+2 x^5+10 x^4+11 x^3+7 x^2+x$
- $y^2=12 x^6+16 x^5+9 x^4+5 x^3+9 x^2+16 x+12$
- and 16 more
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{19}$.
Endomorphism algebra over $\F_{19}$The isogeny class factors as 1.19.ae $\times$ 1.19.c and its endomorphism algebra is a direct product of the endomorphism algebras for each isotypic factor. The endomorphism algebra for each factor is: |
Base change
This is a primitive isogeny class.
Twists
Below is a list of all twists of this isogeny class.
Twist | Extension degree | Common base change |
---|---|---|
2.19.ag_bu | $2$ | (not in LMFDB) |
2.19.c_be | $2$ | (not in LMFDB) |
2.19.g_bu | $2$ | (not in LMFDB) |