Invariants
Base field: | $\F_{19}$ |
Dimension: | $2$ |
L-polynomial: | $( 1 - 5 x + 19 x^{2} )( 1 + 4 x + 19 x^{2} )$ |
$1 - x + 18 x^{2} - 19 x^{3} + 361 x^{4}$ | |
Frobenius angles: | $\pm0.305569972467$, $\pm0.651731832911$ |
Angle rank: | $2$ (numerical) |
Jacobians: | $48$ |
This isogeny class is not simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
$p$-rank: | $2$ |
Slopes: | $[0, 0, 1, 1]$ |
Point counts
Point counts of the abelian variety
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
---|---|---|---|---|---|
$A(\F_{q^r})$ | $360$ | $144000$ | $47005920$ | $17087040000$ | $6135747967800$ |
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
---|---|---|---|---|---|---|---|---|---|---|
$C(\F_{q^r})$ | $19$ | $397$ | $6856$ | $131113$ | $2477989$ | $47020822$ | $893829151$ | $16983721873$ | $322687465144$ | $6131071403677$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 48 curves (of which all are hyperelliptic):
- $y^2=6 x^6+12 x^5+9 x^4+15 x^3+13 x^2+8 x+16$
- $y^2=18 x^6+18 x^5+4 x^4+4 x^2+12 x+10$
- $y^2=13 x^5+6 x^4+x^3+16 x^2+17 x+7$
- $y^2=6 x^6+6 x^5+3 x^4+6 x^3+15 x^2+15 x$
- $y^2=10 x^6+6 x^5+6 x^4+18 x^3+5 x^2+16 x+5$
- $y^2=5 x^6+2 x^5+4 x^4+9 x^3+3 x^2+16 x+11$
- $y^2=3 x^6+2 x^5+11 x^4+2 x^3+12 x^2+16 x$
- $y^2=6 x^5+15 x^4+14 x^3+4 x^2+10 x+6$
- $y^2=3 x^6+17 x^5+3 x^4+4 x^3+7 x^2+7 x+6$
- $y^2=6 x^5+16 x^4+6 x^3+3 x^2+11 x+7$
- $y^2=5 x^6+8 x^5+5 x^4+x^3+12 x^2+7 x+6$
- $y^2=3 x^6+6 x^5+6 x^4+15 x^3+15 x^2+16 x+11$
- $y^2=6 x^6+9 x^5+12 x^4+5 x^3+17 x^2+9 x+18$
- $y^2=4 x^6+3 x^5+x^4+8 x^3+18 x^2+8 x+15$
- $y^2=7 x^6+10 x^5+14 x^4+4 x^3+12 x^2+12 x+2$
- $y^2=2 x^6+12 x^5+15 x^4+6 x^3+14 x^2+x+7$
- $y^2=8 x^6+3 x^5+5 x^4+7 x^3+5 x^2+13 x+14$
- $y^2=16 x^5+11 x^4+15 x^3+16 x^2+14 x+4$
- $y^2=13 x^6+5 x^5+12 x^4+14 x^3+10 x^2+15 x+18$
- $y^2=3 x^6+2 x^5+17 x^4+17 x^3+3 x^2+14 x+18$
- and 28 more
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{19}$.
Endomorphism algebra over $\F_{19}$The isogeny class factors as 1.19.af $\times$ 1.19.e and its endomorphism algebra is a direct product of the endomorphism algebras for each isotypic factor. The endomorphism algebra for each factor is: |
Base change
This is a primitive isogeny class.
Twists
Below is a list of all twists of this isogeny class.
Twist | Extension degree | Common base change |
---|---|---|
2.19.aj_cg | $2$ | (not in LMFDB) |
2.19.b_s | $2$ | (not in LMFDB) |
2.19.j_cg | $2$ | (not in LMFDB) |