Properties

Label 2.19.ab_s
Base field $\F_{19}$
Dimension $2$
$p$-rank $2$
Ordinary yes
Supersingular no
Simple no
Geometrically simple no
Primitive yes
Principally polarizable yes
Contains a Jacobian yes

Related objects

Downloads

Learn more

Invariants

Base field:  $\F_{19}$
Dimension:  $2$
L-polynomial:  $( 1 - 5 x + 19 x^{2} )( 1 + 4 x + 19 x^{2} )$
  $1 - x + 18 x^{2} - 19 x^{3} + 361 x^{4}$
Frobenius angles:  $\pm0.305569972467$, $\pm0.651731832911$
Angle rank:  $2$ (numerical)
Jacobians:  $48$

This isogeny class is not simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.

Newton polygon

This isogeny class is ordinary.

$p$-rank:  $2$
Slopes:  $[0, 0, 1, 1]$

Point counts

Point counts of the abelian variety

$r$ $1$ $2$ $3$ $4$ $5$
$A(\F_{q^r})$ $360$ $144000$ $47005920$ $17087040000$ $6135747967800$

Point counts of the curve

$r$ $1$ $2$ $3$ $4$ $5$ $6$ $7$ $8$ $9$ $10$
$C(\F_{q^r})$ $19$ $397$ $6856$ $131113$ $2477989$ $47020822$ $893829151$ $16983721873$ $322687465144$ $6131071403677$

Jacobians and polarizations

This isogeny class is principally polarizable and contains the Jacobians of 48 curves (of which all are hyperelliptic):

Decomposition and endomorphism algebra

All geometric endomorphisms are defined over $\F_{19}$.

Endomorphism algebra over $\F_{19}$
The isogeny class factors as 1.19.af $\times$ 1.19.e and its endomorphism algebra is a direct product of the endomorphism algebras for each isotypic factor. The endomorphism algebra for each factor is:

Base change

This is a primitive isogeny class.

Twists

Below is a list of all twists of this isogeny class.

TwistExtension degreeCommon base change
2.19.aj_cg$2$(not in LMFDB)
2.19.b_s$2$(not in LMFDB)
2.19.j_cg$2$(not in LMFDB)