Properties

Label 2.179.abv_biw
Base field $\F_{179}$
Dimension $2$
$p$-rank $2$
Ordinary yes
Supersingular no
Simple yes
Geometrically simple yes
Primitive yes
Principally polarizable yes
Contains a Jacobian yes

Related objects

Downloads

Learn more

Invariants

Base field:  $\F_{179}$
Dimension:  $2$
L-polynomial:  $1 - 47 x + 906 x^{2} - 8413 x^{3} + 32041 x^{4}$
Frobenius angles:  $\pm0.0955537064913$, $\pm0.204199342431$
Angle rank:  $2$ (numerical)
Number field:  4.0.1159757.1
Galois group:  $D_{4}$
Jacobians:  $22$

This isogeny class is simple and geometrically simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.

Newton polygon

This isogeny class is ordinary.

$p$-rank:  $2$
Slopes:  $[0, 0, 1, 1]$

Point counts

Point counts of the abelian variety

$r$ $1$ $2$ $3$ $4$ $5$
$A(\F_{q^r})$ $24488$ $1013999104$ $32886572271776$ $1053991686989355008$ $33770087832404015844088$

Point counts of the curve

$r$ $1$ $2$ $3$ $4$ $5$ $6$ $7$ $8$ $9$ $10$
$C(\F_{q^r})$ $133$ $31645$ $5734024$ $1026656265$ $183766792563$ $32894124781654$ $5888046418057321$ $1053960289568211153$ $188658891711954915064$ $33769941616282891573005$

Jacobians and polarizations

This isogeny class is principally polarizable and contains the Jacobians of 22 curves (of which all are hyperelliptic):

Decomposition and endomorphism algebra

All geometric endomorphisms are defined over $\F_{179}$.

Endomorphism algebra over $\F_{179}$
The endomorphism algebra of this simple isogeny class is 4.0.1159757.1.

Base change

This is a primitive isogeny class.

Twists

Below is a list of all twists of this isogeny class.

TwistExtension degreeCommon base change
2.179.bv_biw$2$(not in LMFDB)