Properties

Label 2.179.abu_bic
Base field $\F_{179}$
Dimension $2$
$p$-rank $2$
Ordinary yes
Supersingular no
Simple no
Geometrically simple no
Primitive yes
Principally polarizable yes
Contains a Jacobian yes

Related objects

Downloads

Learn more

Invariants

Base field:  $\F_{179}$
Dimension:  $2$
L-polynomial:  $( 1 - 24 x + 179 x^{2} )( 1 - 22 x + 179 x^{2} )$
  $1 - 46 x + 886 x^{2} - 8234 x^{3} + 32041 x^{4}$
Frobenius angles:  $\pm0.145797798478$, $\pm0.192758452317$
Angle rank:  $2$ (numerical)
Jacobians:  $24$

This isogeny class is not simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.

Newton polygon

This isogeny class is ordinary.

$p$-rank:  $2$
Slopes:  $[0, 0, 1, 1]$

Point counts

Point counts of the abelian variety

$r$ $1$ $2$ $3$ $4$ $5$
$A(\F_{q^r})$ $24648$ $1015694784$ $32895442952424$ $1054026780125829120$ $33770201968343204326248$

Point counts of the curve

$r$ $1$ $2$ $3$ $4$ $5$ $6$ $7$ $8$ $9$ $10$
$C(\F_{q^r})$ $134$ $31698$ $5735570$ $1026690446$ $183767413654$ $32894134150626$ $5888046529756546$ $1053960290397230686$ $188658891707887595750$ $33769941615973595014578$

Jacobians and polarizations

This isogeny class is principally polarizable and contains the Jacobians of 24 curves (of which all are hyperelliptic):

Decomposition and endomorphism algebra

All geometric endomorphisms are defined over $\F_{179}$.

Endomorphism algebra over $\F_{179}$
The isogeny class factors as 1.179.ay $\times$ 1.179.aw and its endomorphism algebra is a direct product of the endomorphism algebras for each isotypic factor. The endomorphism algebra for each factor is:

Base change

This is a primitive isogeny class.

Twists

Below is a list of all twists of this isogeny class.

TwistExtension degreeCommon base change
2.179.ac_ago$2$(not in LMFDB)
2.179.c_ago$2$(not in LMFDB)
2.179.bu_bic$2$(not in LMFDB)