Invariants
| Base field: | $\F_{179}$ |
| Dimension: | $2$ |
| L-polynomial: | $( 1 - 24 x + 179 x^{2} )( 1 - 22 x + 179 x^{2} )$ |
| $1 - 46 x + 886 x^{2} - 8234 x^{3} + 32041 x^{4}$ | |
| Frobenius angles: | $\pm0.145797798478$, $\pm0.192758452317$ |
| Angle rank: | $2$ (numerical) |
| Jacobians: | $24$ |
This isogeny class is not simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
| $p$-rank: | $2$ |
| Slopes: | $[0, 0, 1, 1]$ |
Point counts
Point counts of the abelian variety
| $r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
|---|---|---|---|---|---|
| $A(\F_{q^r})$ | $24648$ | $1015694784$ | $32895442952424$ | $1054026780125829120$ | $33770201968343204326248$ |
| $r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
|---|---|---|---|---|---|---|---|---|---|---|
| $C(\F_{q^r})$ | $134$ | $31698$ | $5735570$ | $1026690446$ | $183767413654$ | $32894134150626$ | $5888046529756546$ | $1053960290397230686$ | $188658891707887595750$ | $33769941615973595014578$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 24 curves (of which all are hyperelliptic):
- $y^2=21 x^6+105 x^5+155 x^4+39 x^3+155 x^2+105 x+21$
- $y^2=96 x^6+45 x^5+8 x^4+62 x^3+98 x^2+141 x+69$
- $y^2=34 x^6+161 x^5+63 x^4+159 x^3+92 x^2+57 x+143$
- $y^2=178 x^6+83 x^5+151 x^4+77 x^3+151 x^2+83 x+178$
- $y^2=93 x^6+16 x^5+77 x^4+141 x^3+77 x^2+16 x+93$
- $y^2=53 x^6+144 x^5+178 x^4+166 x^3+178 x^2+144 x+53$
- $y^2=154 x^6+129 x^5+115 x^4+33 x^3+162 x^2+117 x+140$
- $y^2=x^6+88 x^5+147 x^4+64 x^3+147 x^2+88 x+1$
- $y^2=69 x^6+119 x^5+122 x^4+34 x^3+55 x^2+40 x+170$
- $y^2=105 x^6+42 x^5+72 x^4+100 x^3+44 x^2+19 x+34$
- $y^2=159 x^6+66 x^5+79 x^4+138 x^3+79 x^2+66 x+159$
- $y^2=159 x^6+132 x^5+34 x^4+63 x^3+34 x^2+132 x+159$
- $y^2=148 x^6+40 x^5+116 x^4+92 x^3+116 x^2+40 x+148$
- $y^2=34 x^6+102 x^5+36 x^4+68 x^3+169 x^2+104 x+176$
- $y^2=51 x^6+126 x^5+123 x^4+7 x^3+92 x^2+46 x+65$
- $y^2=26 x^6+96 x^5+164 x^4+78 x^3+136 x^2+92 x+148$
- $y^2=75 x^6+103 x^5+111 x^4+116 x^3+109 x^2+122 x+25$
- $y^2=62 x^6+40 x^5+135 x^4+73 x^3+13 x^2+164 x+134$
- $y^2=170 x^6+154 x^5+88 x^4+14 x^3+88 x^2+154 x+170$
- $y^2=93 x^6+146 x^5+172 x^4+54 x^3+172 x^2+146 x+93$
- $y^2=26 x^6+165 x^5+60 x^4+110 x^3+60 x^2+165 x+26$
- $y^2=33 x^6+170 x^5+138 x^4+12 x^3+138 x^2+170 x+33$
- $y^2=170 x^6+39 x^5+35 x^4+178 x^3+122 x^2+135 x+35$
- $y^2=38 x^6+2 x^5+64 x^4+135 x^3+64 x^2+2 x+38$
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{179}$.
Endomorphism algebra over $\F_{179}$| The isogeny class factors as 1.179.ay $\times$ 1.179.aw and its endomorphism algebra is a direct product of the endomorphism algebras for each isotypic factor. The endomorphism algebra for each factor is: |
Base change
This is a primitive isogeny class.
Twists
Below is a list of all twists of this isogeny class.
| Twist | Extension degree | Common base change |
|---|---|---|
| 2.179.ac_ago | $2$ | (not in LMFDB) |
| 2.179.c_ago | $2$ | (not in LMFDB) |
| 2.179.bu_bic | $2$ | (not in LMFDB) |