Properties

Label 2.179.abu_bht
Base field $\F_{179}$
Dimension $2$
$p$-rank $2$
Ordinary yes
Supersingular no
Simple yes
Geometrically simple yes
Primitive yes
Principally polarizable yes
Contains a Jacobian yes

Related objects

Downloads

Learn more

Invariants

Base field:  $\F_{179}$
Dimension:  $2$
L-polynomial:  $1 - 46 x + 877 x^{2} - 8234 x^{3} + 32041 x^{4}$
Frobenius angles:  $\pm0.0673026795343$, $\pm0.234176157399$
Angle rank:  $2$ (numerical)
Number field:  4.0.16270400.1
Galois group:  $D_{4}$
Jacobians:  $18$

This isogeny class is simple and geometrically simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.

Newton polygon

This isogeny class is ordinary.

$p$-rank:  $2$
Slopes:  $[0, 0, 1, 1]$

Point counts

Point counts of the abelian variety

$r$ $1$ $2$ $3$ $4$ $5$
$A(\F_{q^r})$ $24639$ $1015102161$ $32888309771556$ $1053981151359429609$ $33769999597085204997399$

Point counts of the curve

$r$ $1$ $2$ $3$ $4$ $5$ $6$ $7$ $8$ $9$ $10$
$C(\F_{q^r})$ $134$ $31680$ $5734328$ $1026646004$ $183766312414$ $32894113402206$ $5888046227726986$ $1053960287242942564$ $188658891694120647992$ $33769941616298091481200$

Jacobians and polarizations

This isogeny class is principally polarizable and contains the Jacobians of 18 curves (of which all are hyperelliptic):

Decomposition and endomorphism algebra

All geometric endomorphisms are defined over $\F_{179}$.

Endomorphism algebra over $\F_{179}$
The endomorphism algebra of this simple isogeny class is 4.0.16270400.1.

Base change

This is a primitive isogeny class.

Twists

Below is a list of all twists of this isogeny class.

TwistExtension degreeCommon base change
2.179.bu_bht$2$(not in LMFDB)