Invariants
| Base field: | $\F_{179}$ |
| Dimension: | $2$ |
| L-polynomial: | $1 - 46 x + 877 x^{2} - 8234 x^{3} + 32041 x^{4}$ |
| Frobenius angles: | $\pm0.0673026795343$, $\pm0.234176157399$ |
| Angle rank: | $2$ (numerical) |
| Number field: | 4.0.16270400.1 |
| Galois group: | $D_{4}$ |
| Jacobians: | $18$ |
This isogeny class is simple and geometrically simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
| $p$-rank: | $2$ |
| Slopes: | $[0, 0, 1, 1]$ |
Point counts
Point counts of the abelian variety
| $r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
|---|---|---|---|---|---|
| $A(\F_{q^r})$ | $24639$ | $1015102161$ | $32888309771556$ | $1053981151359429609$ | $33769999597085204997399$ |
| $r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
|---|---|---|---|---|---|---|---|---|---|---|
| $C(\F_{q^r})$ | $134$ | $31680$ | $5734328$ | $1026646004$ | $183766312414$ | $32894113402206$ | $5888046227726986$ | $1053960287242942564$ | $188658891694120647992$ | $33769941616298091481200$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 18 curves (of which all are hyperelliptic):
- $y^2=33 x^6+72 x^5+61 x^4+103 x^3+20 x^2+152 x+25$
- $y^2=55 x^6+133 x^5+54 x^4+127 x^3+48 x^2+63 x+59$
- $y^2=128 x^6+81 x^5+44 x^4+20 x^3+51 x^2+31 x+140$
- $y^2=104 x^6+23 x^5+19 x^4+67 x^3+51 x^2+80 x+20$
- $y^2=103 x^6+94 x^5+86 x^4+131 x^3+109 x^2+94 x+97$
- $y^2=4 x^6+177 x^5+73 x^4+161 x^3+9 x^2+57 x+178$
- $y^2=176 x^6+141 x^5+171 x^4+96 x^3+175 x^2+17 x+134$
- $y^2=80 x^6+41 x^5+139 x^4+62 x^3+16 x^2+85 x+58$
- $y^2=147 x^6+17 x^5+32 x^4+145 x^3+177 x^2+40 x+129$
- $y^2=46 x^6+66 x^5+109 x^4+127 x^3+15 x^2+103 x+133$
- $y^2=115 x^6+160 x^5+x^4+25 x^3+139 x^2+52 x+97$
- $y^2=94 x^6+12 x^5+125 x^4+118 x^3+86 x^2+132 x+30$
- $y^2=36 x^6+120 x^5+100 x^4+58 x^3+8 x^2+14 x+26$
- $y^2=84 x^6+159 x^5+2 x^4+56 x^3+151 x^2+123 x+40$
- $y^2=6 x^6+40 x^5+66 x^4+26 x^3+131 x^2+175 x+154$
- $y^2=63 x^6+138 x^5+165 x^4+120 x^3+74 x^2+18 x+63$
- $y^2=63 x^6+46 x^5+162 x^4+50 x^3+76 x^2+92 x+53$
- $y^2=164 x^6+39 x^5+168 x^4+95 x^3+160 x^2+147 x+91$
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{179}$.
Endomorphism algebra over $\F_{179}$| The endomorphism algebra of this simple isogeny class is 4.0.16270400.1. |
Base change
This is a primitive isogeny class.
Twists
Below is a list of all twists of this isogeny class.
| Twist | Extension degree | Common base change |
|---|---|---|
| 2.179.bu_bht | $2$ | (not in LMFDB) |