Invariants
| Base field: | $\F_{173}$ |
| Dimension: | $2$ |
| L-polynomial: | $( 1 - 25 x + 173 x^{2} )( 1 - 21 x + 173 x^{2} )$ |
| $1 - 46 x + 871 x^{2} - 7958 x^{3} + 29929 x^{4}$ | |
| Frobenius angles: | $\pm0.100717649571$, $\pm0.205732831898$ |
| Angle rank: | $2$ (numerical) |
| Jacobians: | $42$ |
This isogeny class is not simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
| $p$-rank: | $2$ |
| Slopes: | $[0, 0, 1, 1]$ |
Point counts
Point counts of the abelian variety
| $r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
|---|---|---|---|---|---|
| $A(\F_{q^r})$ | $22797$ | $884637585$ | $26803519496208$ | $802388604578081625$ | $24013930738364481950397$ |
| $r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
|---|---|---|---|---|---|---|---|---|---|---|
| $C(\F_{q^r})$ | $128$ | $29556$ | $5176706$ | $895777892$ | $154964685088$ | $26808764337414$ | $4637914433706976$ | $802359179151689668$ | $138808137877868610698$ | $24013807852615882117236$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 42 curves (of which all are hyperelliptic):
- $y^2=166 x^6+169 x^5+148 x^4+104 x^3+85 x^2+15 x+143$
- $y^2=87 x^6+56 x^5+48 x^4+93 x^3+32 x^2+121 x+45$
- $y^2=145 x^6+154 x^5+76 x^4+28 x^3+104 x^2+101 x+104$
- $y^2=70 x^6+2 x^5+168 x^4+118 x^3+x^2+66 x+76$
- $y^2=129 x^6+25 x^5+49 x^4+95 x^3+105 x^2+141 x+34$
- $y^2=14 x^6+10 x^5+25 x^4+164 x^3+160 x^2+29 x+73$
- $y^2=95 x^6+77 x^5+61 x^4+103 x^3+97 x^2+37 x+132$
- $y^2=114 x^6+54 x^5+17 x^4+71 x^3+101 x^2+33 x+112$
- $y^2=8 x^6+63 x^5+55 x^4+87 x^3+34 x^2+2 x+5$
- $y^2=131 x^6+28 x^5+25 x^4+116 x^3+29 x^2+72 x+110$
- $y^2=15 x^6+83 x^5+121 x^4+88 x^3+16 x^2+14 x+85$
- $y^2=39 x^6+62 x^5+24 x^4+167 x^3+100 x^2+48 x+70$
- $y^2=64 x^6+158 x^5+108 x^4+51 x^3+20 x^2+60 x+132$
- $y^2=96 x^6+95 x^5+27 x^4+170 x^3+112 x^2+158 x+153$
- $y^2=172 x^6+121 x^5+37 x^4+161 x^3+119 x^2+144 x+124$
- $y^2=34 x^6+117 x^5+116 x^4+134 x^3+102 x^2+151 x+142$
- $y^2=14 x^6+102 x^5+33 x^4+80 x^3+100 x^2+119 x+2$
- $y^2=91 x^6+89 x^5+60 x^4+160 x^3+2 x^2+11 x+167$
- $y^2=171 x^6+116 x^5+169 x^4+151 x^3+140 x^2+67 x+115$
- $y^2=62 x^6+130 x^5+158 x^4+27 x^3+169 x^2+40 x+108$
- and 22 more
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{173}$.
Endomorphism algebra over $\F_{173}$| The isogeny class factors as 1.173.az $\times$ 1.173.av and its endomorphism algebra is a direct product of the endomorphism algebras for each isotypic factor. The endomorphism algebra for each factor is: |
Base change
This is a primitive isogeny class.
Twists
Below is a list of all twists of this isogeny class.
| Twist | Extension degree | Common base change |
|---|---|---|
| 2.173.ae_agx | $2$ | (not in LMFDB) |
| 2.173.e_agx | $2$ | (not in LMFDB) |
| 2.173.bu_bhn | $2$ | (not in LMFDB) |