Invariants
| Base field: | $\F_{173}$ |
| Dimension: | $2$ |
| L-polynomial: | $( 1 - 26 x + 173 x^{2} )( 1 - 20 x + 173 x^{2} )$ |
| $1 - 46 x + 866 x^{2} - 7958 x^{3} + 29929 x^{4}$ | |
| Frobenius angles: | $\pm0.0485897903475$, $\pm0.225058830207$ |
| Angle rank: | $2$ (numerical) |
| Jacobians: | $36$ |
This isogeny class is not simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
| $p$-rank: | $2$ |
| Slopes: | $[0, 0, 1, 1]$ |
Point counts
Point counts of the abelian variety
| $r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
|---|---|---|---|---|---|
| $A(\F_{q^r})$ | $22792$ | $884329600$ | $26799941496328$ | $802366253860864000$ | $24013832366865170070472$ |
| $r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
|---|---|---|---|---|---|---|---|---|---|---|
| $C(\F_{q^r})$ | $128$ | $29546$ | $5176016$ | $895752942$ | $154964050288$ | $26808751715834$ | $4637914228914976$ | $802359176411562718$ | $138808137848265316448$ | $24013807852378475042186$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 36 curves (of which all are hyperelliptic):
- $y^2=168 x^6+54 x^5+120 x^4+108 x^3+25 x^2+19 x+166$
- $y^2=97 x^6+60 x^5+69 x^4+107 x^3+38 x^2+61 x+76$
- $y^2=131 x^6+15 x^5+68 x^4+46 x^3+68 x^2+15 x+131$
- $y^2=99 x^6+153 x^5+139 x^4+15 x^3+118 x^2+56 x+41$
- $y^2=102 x^6+22 x^5+70 x^4+7 x^3+70 x^2+22 x+102$
- $y^2=6 x^6+136 x^5+134 x^4+69 x^3+110 x^2+163 x+169$
- $y^2=82 x^6+99 x^5+120 x^4+58 x^3+14 x^2+68 x+108$
- $y^2=116 x^6+103 x^5+90 x^4+58 x^3+135 x^2+40 x+80$
- $y^2=x^6+78 x^5+124 x^4+48 x^3+47 x^2+148 x+16$
- $y^2=127 x^6+31 x^5+118 x^4+126 x^3+80 x^2+29 x+98$
- $y^2=131 x^6+9 x^5+14 x^4+61 x^3+121 x^2+124 x+142$
- $y^2=6 x^6+22 x^5+106 x^4+83 x^3+107 x^2+102 x+93$
- $y^2=42 x^6+82 x^5+120 x^4+63 x^3+70 x^2+32 x+128$
- $y^2=66 x^6+15 x^5+68 x^4+88 x^2+59 x+152$
- $y^2=99 x^6+142 x^5+94 x^4+69 x^3+25 x^2+81 x+77$
- $y^2=110 x^6+66 x^5+116 x^4+9 x^3+55 x^2+78 x+19$
- $y^2=44 x^6+122 x^5+165 x^4+97 x^3+114 x^2+31 x+113$
- $y^2=124 x^6+153 x^5+111 x^4+49 x^3+51 x^2+83 x+142$
- $y^2=29 x^6+157 x^5+24 x^4+74 x^3+49 x^2+55 x+142$
- $y^2=104 x^6+126 x^5+171 x^4+76 x^3+118 x^2+34 x+96$
- and 16 more
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{173}$.
Endomorphism algebra over $\F_{173}$| The isogeny class factors as 1.173.aba $\times$ 1.173.au and its endomorphism algebra is a direct product of the endomorphism algebras for each isotypic factor. The endomorphism algebra for each factor is: |
Base change
This is a primitive isogeny class.