Properties

Label 2.173.abu_bhi
Base field $\F_{173}$
Dimension $2$
$p$-rank $2$
Ordinary yes
Supersingular no
Simple no
Geometrically simple no
Primitive yes
Principally polarizable yes
Contains a Jacobian yes

Related objects

Downloads

Learn more

Invariants

Base field:  $\F_{173}$
Dimension:  $2$
L-polynomial:  $( 1 - 26 x + 173 x^{2} )( 1 - 20 x + 173 x^{2} )$
  $1 - 46 x + 866 x^{2} - 7958 x^{3} + 29929 x^{4}$
Frobenius angles:  $\pm0.0485897903475$, $\pm0.225058830207$
Angle rank:  $2$ (numerical)
Jacobians:  $36$

This isogeny class is not simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.

Newton polygon

This isogeny class is ordinary.

$p$-rank:  $2$
Slopes:  $[0, 0, 1, 1]$

Point counts

Point counts of the abelian variety

$r$ $1$ $2$ $3$ $4$ $5$
$A(\F_{q^r})$ $22792$ $884329600$ $26799941496328$ $802366253860864000$ $24013832366865170070472$

Point counts of the curve

$r$ $1$ $2$ $3$ $4$ $5$ $6$ $7$ $8$ $9$ $10$
$C(\F_{q^r})$ $128$ $29546$ $5176016$ $895752942$ $154964050288$ $26808751715834$ $4637914228914976$ $802359176411562718$ $138808137848265316448$ $24013807852378475042186$

Jacobians and polarizations

This isogeny class is principally polarizable and contains the Jacobians of 36 curves (of which all are hyperelliptic):

Decomposition and endomorphism algebra

All geometric endomorphisms are defined over $\F_{173}$.

Endomorphism algebra over $\F_{173}$
The isogeny class factors as 1.173.aba $\times$ 1.173.au and its endomorphism algebra is a direct product of the endomorphism algebras for each isotypic factor. The endomorphism algebra for each factor is:

Base change

This is a primitive isogeny class.

Twists

Below are some of the twists of this isogeny class.

TwistExtension degreeCommon base change
2.173.ag_ags$2$(not in LMFDB)
2.173.g_ags$2$(not in LMFDB)
2.173.bu_bhi$2$(not in LMFDB)

Below is a list of all twists of this isogeny class.

TwistExtension degreeCommon base change
2.173.ag_ags$2$(not in LMFDB)
2.173.g_ags$2$(not in LMFDB)
2.173.bu_bhi$2$(not in LMFDB)
2.173.ay_qk$4$(not in LMFDB)
2.173.aq_kg$4$(not in LMFDB)
2.173.q_kg$4$(not in LMFDB)
2.173.y_qk$4$(not in LMFDB)