Properties

Label 2.17.al_cm
Base field $\F_{17}$
Dimension $2$
$p$-rank $2$
Ordinary yes
Supersingular no
Simple no
Geometrically simple no
Primitive yes
Principally polarizable yes
Contains a Jacobian no

Related objects

Downloads

Learn more

Invariants

Base field:  $\F_{17}$
Dimension:  $2$
L-polynomial:  $( 1 - 6 x + 17 x^{2} )( 1 - 5 x + 17 x^{2} )$
  $1 - 11 x + 64 x^{2} - 187 x^{3} + 289 x^{4}$
Frobenius angles:  $\pm0.240632536990$, $\pm0.292637436158$
Angle rank:  $2$ (numerical)
Jacobians:  $0$
Isomorphism classes:  3

This isogeny class is not simple, primitive, ordinary, and not supersingular. It is principally polarizable.

Newton polygon

This isogeny class is ordinary.

$p$-rank:  $2$
Slopes:  $[0, 0, 1, 1]$

Point counts

Point counts of the abelian variety

$r$ $1$ $2$ $3$ $4$ $5$
$A(\F_{q^r})$ $156$ $86112$ $25240176$ $7065661824$ $2019105335676$

Point counts of the (virtual) curve

$r$ $1$ $2$ $3$ $4$ $5$ $6$ $7$ $8$ $9$ $10$
$C(\F_{q^r})$ $7$ $297$ $5134$ $84593$ $1422047$ $24132222$ $410276447$ $6975515041$ $118587559918$ $2015995840857$

Jacobians and polarizations

This isogeny class is principally polarizable, but does not contain a Jacobian.

Decomposition and endomorphism algebra

All geometric endomorphisms are defined over $\F_{17}$.

Endomorphism algebra over $\F_{17}$
The isogeny class factors as 1.17.ag $\times$ 1.17.af and its endomorphism algebra is a direct product of the endomorphism algebras for each isotypic factor. The endomorphism algebra for each factor is:

Base change

This is a primitive isogeny class.

Twists

Below is a list of all twists of this isogeny class.

TwistExtension degreeCommon base change
2.17.ab_e$2$(not in LMFDB)
2.17.b_e$2$(not in LMFDB)
2.17.l_cm$2$(not in LMFDB)