Invariants
Base field: | $\F_{17}$ |
Dimension: | $2$ |
L-polynomial: | $1 - 3 x + 11 x^{2} - 51 x^{3} + 289 x^{4}$ |
Frobenius angles: | $\pm0.209422893007$, $\pm0.640592044118$ |
Angle rank: | $2$ (numerical) |
Number field: | 4.0.14414013.1 |
Galois group: | $D_{4}$ |
Jacobians: | $24$ |
This isogeny class is simple and geometrically simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
$p$-rank: | $2$ |
Slopes: | $[0, 0, 1, 1]$ |
Point counts
Point counts of the abelian variety
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
---|---|---|---|---|---|
$A(\F_{q^r})$ | $247$ | $87685$ | $23741887$ | $7027514325$ | $2022066887152$ |
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
---|---|---|---|---|---|---|---|---|---|---|
$C(\F_{q^r})$ | $15$ | $303$ | $4833$ | $84139$ | $1424130$ | $24135711$ | $410340981$ | $6975824371$ | $118586722491$ | $2015990357118$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 24 curves (of which all are hyperelliptic):
- $y^2=6 x^6+8 x^5+5 x^4+10 x+6$
- $y^2=15 x^6+7 x^5+6 x^2+7 x+3$
- $y^2=11 x^6+4 x^5+4 x^4+6 x^3+3 x^2+12 x+8$
- $y^2=15 x^6+15 x^5+16 x^4+16 x^3+14 x^2+3 x+12$
- $y^2=14 x^6+6 x^5+3 x^4+9 x^3+8 x+8$
- $y^2=11 x^6+11 x^5+15 x^4+7 x^3+9 x^2+6 x+8$
- $y^2=15 x^6+5 x^5+5 x^4+2 x^2+13$
- $y^2=x^6+16 x^4+12 x^2+6 x+16$
- $y^2=8 x^6+16 x^5+15 x^4+15 x^3+10 x^2+11 x+6$
- $y^2=7 x^6+5 x^5+3 x^4+4 x^3+2 x+12$
- $y^2=11 x^6+6 x^5+5 x^4+15 x^3+11 x+6$
- $y^2=14 x^6+14 x^5+x^4+10 x^3+3 x^2+14 x+11$
- $y^2=9 x^6+2 x^4+16 x^3+8 x^2+x+9$
- $y^2=13 x^6+8 x^5+13 x^4+13 x^3+3$
- $y^2=11 x^6+5 x^5+7 x^4+11 x^3+16 x^2+8 x+2$
- $y^2=9 x^6+x^5+9 x^4+3 x^3+2 x^2+4 x$
- $y^2=x^6+6 x^5+14 x^3+3 x^2+10 x+6$
- $y^2=16 x^6+13 x^5+3 x^4+11 x^3+15 x^2+4 x+6$
- $y^2=3 x^6+6 x^5+12 x^4+5 x^3+11 x^2+2 x+15$
- $y^2=5 x^5+13 x^4+6 x^3+6 x^2+6 x+12$
- $y^2=6 x^6+12 x^5+4 x^3+9 x^2+13 x+7$
- $y^2=11 x^6+14 x^5+10 x^4+7 x^3+x^2+4 x+6$
- $y^2=x^6+x^5+14 x^4+4 x^3+3 x^2+15 x+14$
- $y^2=x^6+5 x^5+4 x^3+2 x+6$
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{17}$.
Endomorphism algebra over $\F_{17}$The endomorphism algebra of this simple isogeny class is 4.0.14414013.1. |
Base change
This is a primitive isogeny class.
Twists
Below is a list of all twists of this isogeny class.
Twist | Extension degree | Common base change |
---|---|---|
2.17.d_l | $2$ | (not in LMFDB) |