Properties

Label 2.17.ad_l
Base field $\F_{17}$
Dimension $2$
$p$-rank $2$
Ordinary yes
Supersingular no
Simple yes
Geometrically simple yes
Primitive yes
Principally polarizable yes
Contains a Jacobian yes

Related objects

Downloads

Learn more

Invariants

Base field:  $\F_{17}$
Dimension:  $2$
L-polynomial:  $1 - 3 x + 11 x^{2} - 51 x^{3} + 289 x^{4}$
Frobenius angles:  $\pm0.209422893007$, $\pm0.640592044118$
Angle rank:  $2$ (numerical)
Number field:  4.0.14414013.1
Galois group:  $D_{4}$
Jacobians:  $24$

This isogeny class is simple and geometrically simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.

Newton polygon

This isogeny class is ordinary.

$p$-rank:  $2$
Slopes:  $[0, 0, 1, 1]$

Point counts

Point counts of the abelian variety

$r$ $1$ $2$ $3$ $4$ $5$
$A(\F_{q^r})$ $247$ $87685$ $23741887$ $7027514325$ $2022066887152$

Point counts of the curve

$r$ $1$ $2$ $3$ $4$ $5$ $6$ $7$ $8$ $9$ $10$
$C(\F_{q^r})$ $15$ $303$ $4833$ $84139$ $1424130$ $24135711$ $410340981$ $6975824371$ $118586722491$ $2015990357118$

Jacobians and polarizations

This isogeny class is principally polarizable and contains the Jacobians of 24 curves (of which all are hyperelliptic):

Decomposition and endomorphism algebra

All geometric endomorphisms are defined over $\F_{17}$.

Endomorphism algebra over $\F_{17}$
The endomorphism algebra of this simple isogeny class is 4.0.14414013.1.

Base change

This is a primitive isogeny class.

Twists

Below is a list of all twists of this isogeny class.

TwistExtension degreeCommon base change
2.17.d_l$2$(not in LMFDB)