Invariants
Base field: | $\F_{17}$ |
Dimension: | $2$ |
L-polynomial: | $1 - 3 x + 4 x^{2} - 51 x^{3} + 289 x^{4}$ |
Frobenius angles: | $\pm0.163749975436$, $\pm0.669159583725$ |
Angle rank: | $2$ (numerical) |
Number field: | 4.0.216333.2 |
Galois group: | $D_{4}$ |
Jacobians: | $32$ |
Isomorphism classes: | 32 |
This isogeny class is simple and geometrically simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
$p$-rank: | $2$ |
Slopes: | $[0, 0, 1, 1]$ |
Point counts
Point counts of the abelian variety
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
---|---|---|---|---|---|
$A(\F_{q^r})$ | $240$ | $83520$ | $23440320$ | $7024032000$ | $2020424665200$ |
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
---|---|---|---|---|---|---|---|---|---|---|
$C(\F_{q^r})$ | $15$ | $289$ | $4770$ | $84097$ | $1422975$ | $24137566$ | $410397135$ | $6975925633$ | $118587246210$ | $2015994319489$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 32 curves (of which all are hyperelliptic):
- $y^2=16 x^6+5 x^5+10 x^4+10 x^3+14 x^2+2 x+8$
- $y^2=14 x^5+12 x^4+14 x^3+14 x^2+x+6$
- $y^2=7 x^6+8 x^5+x^4+12 x^3+10 x^2+6 x+13$
- $y^2=10 x^6+11 x^5+12 x^4+6 x^3+2 x^2+5 x+6$
- $y^2=8 x^6+12 x^5+14 x^4+12 x^3+x^2+10 x+1$
- $y^2=11 x^6+12 x^5+4 x^4+13 x^3+4 x^2+2 x+10$
- $y^2=11 x^6+16 x^5+9 x^4+11 x^3+12 x^2+2 x+14$
- $y^2=8 x^6+7 x^5+4 x^4+4 x^3+13 x^2+7 x+11$
- $y^2=x^6+14 x^5+12 x^4+13 x^3+5 x^2+5 x+7$
- $y^2=14 x^6+12 x^5+10 x^4+3 x^3+11 x^2+x+1$
- $y^2=8 x^6+14 x^5+8 x^4+15 x^3+10 x^2+6 x+14$
- $y^2=10 x^6+12 x^5+16 x^4+14 x^3+8 x^2+10 x+9$
- $y^2=15 x^5+13 x^4+4 x^3+9 x^2+13 x$
- $y^2=6 x^6+2 x^5+16 x^4+12 x^2+14 x+12$
- $y^2=12 x^6+10 x^5+16 x^4+11 x^3+4 x^2+6 x+9$
- $y^2=2 x^5+10 x^4+8 x^3+15 x^2+8 x+7$
- $y^2=16 x^6+12 x^5+4 x^4+9 x^3+3 x^2+5 x+12$
- $y^2=10 x^6+2 x^5+12 x^4+3 x^3+13 x^2+16 x+12$
- $y^2=x^6+12 x^5+16 x^3+6 x^2+13 x$
- $y^2=9 x^6+16 x^5+16 x^3+7 x^2+15 x+7$
- and 12 more
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{17}$.
Endomorphism algebra over $\F_{17}$The endomorphism algebra of this simple isogeny class is 4.0.216333.2. |
Base change
This is a primitive isogeny class.
Twists
Below is a list of all twists of this isogeny class.
Twist | Extension degree | Common base change |
---|---|---|
2.17.d_e | $2$ | (not in LMFDB) |