Properties

Label 2.17.a_abh
Base field $\F_{17}$
Dimension $2$
$p$-rank $2$
Ordinary yes
Supersingular no
Simple yes
Geometrically simple no
Primitive yes
Principally polarizable yes
Contains a Jacobian no

Related objects

Downloads

Learn more

Invariants

Base field:  $\F_{17}$
Dimension:  $2$
L-polynomial:  $1 - 33 x^{2} + 289 x^{4}$
Frobenius angles:  $\pm0.0386959848954$, $\pm0.961304015105$
Angle rank:  $1$ (numerical)
Number field:  \(\Q(i, \sqrt{67})\)
Galois group:  $C_2^2$
Jacobians:  $0$

This isogeny class is simple but not geometrically simple, primitive, ordinary, and not supersingular. It is principally polarizable.

Newton polygon

This isogeny class is ordinary.

$p$-rank:  $2$
Slopes:  $[0, 0, 1, 1]$

Point counts

Point counts of the abelian variety

$r$ $1$ $2$ $3$ $4$ $5$
$A(\F_{q^r})$ $257$ $66049$ $24130244$ $6890826121$ $2015992913057$

Point counts of the (virtual) curve

$r$ $1$ $2$ $3$ $4$ $5$ $6$ $7$ $8$ $9$ $10$
$C(\F_{q^r})$ $18$ $224$ $4914$ $82500$ $1419858$ $24122918$ $410338674$ $6975569284$ $118587876498$ $2015991925664$

Jacobians and polarizations

This isogeny class is principally polarizable, but does not contain a Jacobian.

Decomposition and endomorphism algebra

All geometric endomorphisms are defined over $\F_{17^{2}}$.

Endomorphism algebra over $\F_{17}$
The endomorphism algebra of this simple isogeny class is \(\Q(i, \sqrt{67})\).
Endomorphism algebra over $\overline{\F}_{17}$
The base change of $A$ to $\F_{17^{2}}$ is 1.289.abh 2 and its endomorphism algebra is $\mathrm{M}_{2}($\(\Q(\sqrt{-67}) \)$)$

Base change

This is a primitive isogeny class.

Twists

Below are some of the twists of this isogeny class.

TwistExtension degreeCommon base change
2.17.ac_bj$4$(not in LMFDB)
2.17.a_bh$4$(not in LMFDB)
2.17.c_bj$4$(not in LMFDB)

Below is a list of all twists of this isogeny class.

TwistExtension degreeCommon base change
2.17.ac_bj$4$(not in LMFDB)
2.17.a_bh$4$(not in LMFDB)
2.17.c_bj$4$(not in LMFDB)
2.17.ab_aq$12$(not in LMFDB)
2.17.b_aq$12$(not in LMFDB)