Invariants
Base field: | $\F_{17}$ |
Dimension: | $2$ |
L-polynomial: | $1 - 33 x^{2} + 289 x^{4}$ |
Frobenius angles: | $\pm0.0386959848954$, $\pm0.961304015105$ |
Angle rank: | $1$ (numerical) |
Number field: | \(\Q(i, \sqrt{67})\) |
Galois group: | $C_2^2$ |
Jacobians: | $0$ |
This isogeny class is simple but not geometrically simple, primitive, ordinary, and not supersingular. It is principally polarizable.
Newton polygon
This isogeny class is ordinary.
$p$-rank: | $2$ |
Slopes: | $[0, 0, 1, 1]$ |
Point counts
Point counts of the abelian variety
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
---|---|---|---|---|---|
$A(\F_{q^r})$ | $257$ | $66049$ | $24130244$ | $6890826121$ | $2015992913057$ |
Point counts of the (virtual) curve
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
---|---|---|---|---|---|---|---|---|---|---|
$C(\F_{q^r})$ | $18$ | $224$ | $4914$ | $82500$ | $1419858$ | $24122918$ | $410338674$ | $6975569284$ | $118587876498$ | $2015991925664$ |
Jacobians and polarizations
This isogeny class is principally polarizable, but does not contain a Jacobian.
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{17^{2}}$.
Endomorphism algebra over $\F_{17}$The endomorphism algebra of this simple isogeny class is \(\Q(i, \sqrt{67})\). |
The base change of $A$ to $\F_{17^{2}}$ is 1.289.abh 2 and its endomorphism algebra is $\mathrm{M}_{2}($\(\Q(\sqrt{-67}) \)$)$ |
Base change
This is a primitive isogeny class.