Invariants
| Base field: | $\F_{167}$ |
| Dimension: | $2$ |
| L-polynomial: | $( 1 - 24 x + 167 x^{2} )^{2}$ |
| $1 - 48 x + 910 x^{2} - 8016 x^{3} + 27889 x^{4}$ | |
| Frobenius angles: | $\pm0.121023609245$, $\pm0.121023609245$ |
| Angle rank: | $1$ (numerical) |
| Jacobians: | $33$ |
| Cyclic group of points: | no |
| Non-cyclic primes: | $2, 3$ |
This isogeny class is not simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
| $p$-rank: | $2$ |
| Slopes: | $[0, 0, 1, 1]$ |
Point counts
Point counts of the abelian variety
| $r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
|---|---|---|---|---|---|
| $A(\F_{q^r})$ | $20736$ | $764411904$ | $21675207280896$ | $604962784643383296$ | $16871988646109807790336$ |
| $r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
|---|---|---|---|---|---|---|---|---|---|---|
| $C(\F_{q^r})$ | $120$ | $27406$ | $4653864$ | $777790750$ | $129892453080$ | $21691973746222$ | $3622557800122248$ | $604967120056796734$ | $101029508571146152248$ | $16871927925339398065486$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 33 curves (of which all are hyperelliptic):
- $y^2=128 x^6+165 x^5+34 x^4+126 x^3+34 x^2+165 x+128$
- $y^2=100 x^6+9 x^4+9 x^2+100$
- $y^2=74 x^6+29 x^5+128 x^4+24 x^3+128 x^2+29 x+74$
- $y^2=153 x^6+110 x^4+110 x^2+153$
- $y^2=74 x^6+139 x^5+36 x^4+54 x^3+128 x^2+46 x+82$
- $y^2=100 x^6+81 x^5+6 x^4+25 x^3+72 x^2+141 x+122$
- $y^2=162 x^6+110 x^5+145 x^4+165 x^3+145 x^2+110 x+162$
- $y^2=12 x^6+136 x^5+112 x^4+158 x^3+112 x^2+136 x+12$
- $y^2=69 x^6+149 x^5+12 x^4+149 x^3+152 x^2+118 x+134$
- $y^2=15 x^6+152 x^5+78 x^4+114 x^3+39 x^2+38 x+148$
- $y^2=60 x^6+166 x^5+101 x^4+109 x^3+131 x^2+146 x+80$
- $y^2=66 x^6+12 x^4+12 x^2+66$
- $y^2=110 x^6+77 x^5+133 x^4+129 x^3+100 x^2+157 x+35$
- $y^2=126 x^6+44 x^5+84 x^4+73 x^3+124 x^2+108 x+77$
- $y^2=89 x^6+122 x^5+112 x^4+63 x^3+150 x^2+89 x+141$
- $y^2=80 x^6+63 x^5+18 x^4+12 x^3+147 x^2+152 x+30$
- $y^2=27 x^6+76 x^5+141 x^4+124 x^3+85 x^2+84 x+38$
- $y^2=25 x^6+50 x^4+50 x^2+25$
- $y^2=58 x^6+105 x^5+x^4+16 x^3+152 x^2+78 x+141$
- $y^2=114 x^6+161 x^5+147 x^4+152 x^3+29 x^2+45 x+29$
- and 13 more
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{167}$.
Endomorphism algebra over $\F_{167}$| The isogeny class factors as 1.167.ay 2 and its endomorphism algebra is $\mathrm{M}_{2}($\(\Q(\sqrt{-23}) \)$)$ |
Base change
This is a primitive isogeny class.