Invariants
| Base field: | $\F_{167}$ |
| Dimension: | $2$ |
| L-polynomial: | $( 1 - 24 x + 167 x^{2} )( 1 - 22 x + 167 x^{2} )$ |
| $1 - 46 x + 862 x^{2} - 7682 x^{3} + 27889 x^{4}$ | |
| Frobenius angles: | $\pm0.121023609245$, $\pm0.175872025744$ |
| Angle rank: | $2$ (numerical) |
| Jacobians: | $24$ |
This isogeny class is not simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
| $p$-rank: | $2$ |
| Slopes: | $[0, 0, 1, 1]$ |
Point counts
Point counts of the abelian variety
| $r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
|---|---|---|---|---|---|
| $A(\F_{q^r})$ | $21024$ | $766955520$ | $21685328694432$ | $604990834989465600$ | $16872045268985848665504$ |
| $r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
|---|---|---|---|---|---|---|---|---|---|---|
| $C(\F_{q^r})$ | $122$ | $27498$ | $4656038$ | $777826814$ | $129892889002$ | $21691976846346$ | $3622557783376150$ | $604967118957133246$ | $101029508546654492186$ | $16871927924945588746218$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 24 curves (of which all are hyperelliptic):
- $y^2=91 x^6+157 x^5+46 x^4+107 x^3+46 x^2+157 x+91$
- $y^2=16 x^6+94 x^5+77 x^4+164 x^3+77 x^2+94 x+16$
- $y^2=77 x^6+98 x^5+18 x^4+67 x^3+18 x^2+98 x+77$
- $y^2=152 x^6+56 x^5+140 x^4+136 x^3+43 x^2+126 x+12$
- $y^2=158 x^6+55 x^5+128 x^4+35 x^3+126 x^2+80 x+82$
- $y^2=29 x^6+73 x^5+29 x^4+127 x^3+147 x^2+135 x+114$
- $y^2=106 x^6+85 x^5+136 x^4+79 x^3+151 x^2+11 x+69$
- $y^2=43 x^6+65 x^5+87 x^4+32 x^3+7 x^2+93 x+10$
- $y^2=66 x^6+150 x^5+74 x^4+149 x^3+74 x^2+150 x+66$
- $y^2=101 x^6+78 x^5+15 x^4+116 x^3+83 x^2+68 x+73$
- $y^2=35 x^6+141 x^5+23 x^4+18 x^3+35 x^2+115 x+92$
- $y^2=107 x^6+119 x^5+20 x^4+124 x^3+20 x^2+119 x+107$
- $y^2=41 x^6+39 x^5+42 x^4+97 x^3+3 x^2+105 x+40$
- $y^2=150 x^6+131 x^5+136 x^4+11 x^3+83 x^2+155 x+87$
- $y^2=143 x^6+86 x^5+120 x^4+3 x^3+120 x^2+86 x+143$
- $y^2=30 x^6+98 x^5+128 x^4+74 x^3+128 x^2+98 x+30$
- $y^2=129 x^6+8 x^5+62 x^4+104 x^3+62 x^2+8 x+129$
- $y^2=125 x^6+72 x^5+97 x^4+50 x^3+62 x^2+162 x+67$
- $y^2=129 x^6+44 x^5+108 x^4+108 x^3+108 x^2+44 x+129$
- $y^2=85 x^6+143 x^5+100 x^4+14 x^3+100 x^2+143 x+85$
- $y^2=143 x^6+106 x^5+132 x^4+28 x^3+121 x^2+45 x+123$
- $y^2=74 x^6+30 x^5+10 x^4+26 x^3+10 x^2+30 x+74$
- $y^2=55 x^6+119 x^5+110 x^4+59 x^3+45 x^2+101 x+104$
- $y^2=62 x^6+57 x^5+26 x^4+39 x^3+26 x^2+57 x+62$
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{167}$.
Endomorphism algebra over $\F_{167}$| The isogeny class factors as 1.167.ay $\times$ 1.167.aw and its endomorphism algebra is a direct product of the endomorphism algebras for each isotypic factor. The endomorphism algebra for each factor is: |
Base change
This is a primitive isogeny class.
Twists
Below is a list of all twists of this isogeny class.
| Twist | Extension degree | Common base change |
|---|---|---|
| 2.167.ac_ahm | $2$ | (not in LMFDB) |
| 2.167.c_ahm | $2$ | (not in LMFDB) |
| 2.167.bu_bhe | $2$ | (not in LMFDB) |